Simulation Results for the SPS Collimator Test

Alexander Koschik

Simulation Parameters

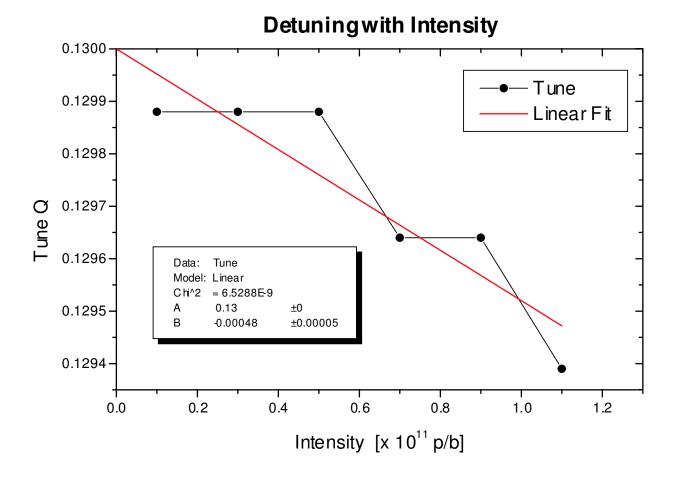
A simulation of the measurement of the LHC collimator impedance in the SPS was envisaged. The following global parameters had been used:

Symbol	Value	Quantity
p	270.0 GeV/c	operation momentum
N_b	$1.1 \cdot 10^{11} \text{ p/b}$	bunch intensity
n_b	288 bunches	number of bunches
	71 * 5, 50, 71 * 5, 50, 71 * 5, 50, 71 * 5, 50, 3000	bucket layout
Q_y	26.13	vertical tune
$<\beta>$	42.097 m	average vert. beta
σ	$71428.6, 1.4e6, 1.4e6, 1.4e6, 1.4e6, 1.4e6, (\Omega m)^{-1}$	conductivities
b_y	0.00125, 0.01765, 0.02465, 0.01915, 0.065, 0.0415 m	beam pipe dimensions
l_{rel}	0.000145, 0.326065, 0.347797, 0.228199, 0.048918, 0.048875	relative lengths

Simulation Results 1/2

Two resistive wall impedance models were tested, the classical resistive wall and the one with inductive bypass (L.Vos thick wall).

Classic Resistive Wall:


Conditions	Growth Rate	Tune ($Q_0 = 0.13$)	Tuneshift
Collimator N/A	1/ au= 410 Turns	Q = 0.12988	$\Delta Q = 0.00097$
Collimator @ 2 mm	1/ au= 116 Turns	Q = 0.12891	$\Delta Q = 0.00097$

Resistive Wall with inductive bypass:

Conditions	Growth Rate	Tune ($Q_0 = 0.13$)	Tuneshift
Collimator N/A	1/ au= 467 Turns	<i>Q</i> = 0.12988	
Collimator @ 2 mm	1/ au= 438 Turns	Q = 0.12939	$\Delta Q = 0.00049$

Simulation Results 2/2

By varying the intensity from $0.1 - 1.1 \cdot 10^{11}$ p/b the tune slope was established. Mind the steps due to the resolution of the FFT.

Conclusions

- If the inductive bypass effect is NOT present, tuneshift and growth rate measurements should clearly indicate it.
- If the inductive bypass model is valid, growth rate measurements with varying collimator gap would be the appropriate tool of verification.
- Also the tuneshift variation with collimator gap variation should show a visible difference for the two impedance models.