BeamX -- towards a 3D self-consistent

computational model of beam-beam effects.

W.Herr & F.W.Jones

Featuring...

- Reasonable [parallel] computing time
- Longitudinal motion under applied Vrf
- Long-range collisions without significant time penalty
- Crossing angle
- Hourglass effect β(s)
- Bunch density profile $\lambda(s)$
- [Limited so far to single bunch-pair and single IP]

Review of methods • Current status & Activities

Ingredients

- Basic 2D
 - □ Macroparticle ensembles ~ 10^5 per beam
 - □ 2D field solver -- hybrid FMM (grid-multipole solver)
 - □ One-turn map of transverse coordinates -- "kick-rotate" model
- Add Longitudinal
 - □ Map (symplectic integrator) representing RF cavity
 - □ Bunch-slicing ~10 bins in rf phase
 - Loop over slice-to-slice [2D] collisions
 - □ Synchro-beam mapping (drift fore and aft of the IP) --Hirata et al.
 - Crossing angle (Lorentz transformation to head-on frame)

Add Parallel

- □ MPI (Message Passing Interface) toolkit
- □ Distribution of tasks to processors in Master-Slave configuration
- □ Data-flow architecture

Characteristics of transverse field solver

- FMM:
 - Adaptive quad-tree algorithm handles virtually any shape and size of distribution (including a mix of distance scales)
 - Known error bounds and settable accuracy
 - □ O(Np) complexity
 - Gives potential and fields parameterized over entire solution region (for space charge, allows computation of image forces for any shape vacuum chamber)

• Hybrid FMM:

- □ Discrete charges (Np) \rightarrow Gridded charges (Ng) \rightarrow FMM fieldsolve at grid-charge locations \rightarrow Force interpolation
- \Box O(Ng) -- competes with FFT-based methods: O(Ng log Ng)
- Empty cells removed from computation no penalty for separated beams!

FMM Quad-Tree Adaptive Subdivision

Figure 2.8 The hierarchy of meshes partitioning the computational cell.

H-FMM vs FFT for separated beams

- The preprocessor uses a grid with PIC-style charge assignment
 - Not for "discretisation" of field equations but rather for:
 - Speed (charge reduction) O(Np) < O(Ng log Ng)</p>
 - For smoothing and elimination of close encounters
 - Grid may be tailored to the distribution not constrained by regularity/aspect ratio requirements.
 - Grid is optional and need not cover entire beam:
 - All-purpose preprocessor handles gridded & discrete charges

Seeking Parallelism

- First-level parallelism
 - $\hfill\square$ For beams with N_s slices, from $1 \to N_s \to 1$ slice-pairs overlap as beams cross each other.
 - □ Slice-pair interactions can be done on different processors
 - \Box Computation time reduced by factor ~ N_s/2
 - □ Scaling reduced from $O(N_s^2)$ to $O(N_s)$
 - □ Allows ~ 1 day turnaround for 5 slices and 10⁵ collisions
 - □ Good fit to HP CluMP system at U. of Calgary
 - □ Needs load-balancing and other tuning
- Second-level parallelism
 - □ Parallelised FMM algorithm -- major effort
 - Force decomposition à la Ellison/Vogt/Sen -- no need to deconstruct FMM!

BeamX Data Flow

Division of Labour

Performance

Parallel algorithm implemented with MPI on different clusters yields the expected benefit, reducing O(N²) scaling to linear scaling with number of slices.

Current scenario

- Original resources dried up: TRIUMF mini-cluster was cannibalized and U. of Alberta cluster too busy (Atlas)
- New resources are available: Westgrid (Ca\$50M)
 3 major installations: SGI SM, HP CluMP, IBM blade
 Some hope for "livable" turnaround times: 0.5 2days.
 Very competitive and large startup penalty
 Do profiling and tuning on CluMP (if sustainable)
- Early results: spectra, phase space, rms emittance look reasonable. Quantitative validation (various) is needed.

Activities

Testing, validation, debugging (the usual)

Model refinement

- Longitudinal field component: small effect but non-trivial to treat.
 Currently calculated from beam stats assuming Gaussian.
- Chromaticity: can implement as δ-parameterized rotation matrix at IP preserving the lattice optics (invariant ellipse)

Computational refinement

- Parameter sweeps to observe discretization errors and to try to isolate effects (now in progress)
- □ Profiling and load-balancing (once platform is stabilised)
- Parallel FMM via force decomposition (potentially useful for 2D code too)

General objective

To provide some ground-work for future large-scale beam-beam simulations.

 3D (macroparticle, self-consistent) beam-beam simulation is not a crowded field

- Cf. Chiang Furman Ryne "BeamBeam3D"
 - Very similar scope to BeamX but different methods: adaptive bunch-slicing, shifted Green's functions, particle/domain based parallel decomposition
 - Resources: \$\$ DOE Advanced Computing and NERSC