FIRST HFSS SIMULATIONS OF THE LHC COLLIMATORS

E. Métral

- 1st Goal: Reproduce the results from Tsutsui in his LHC Project Note 318 (Resistive wall impedance of a LHC collimator)
 Not yet a success, as shown after...
- Next step: Simulate the PS kickers (with the classical 2 wire method, suspected to give wrong results in this case, and with a displaced wire)

MODEL

(The quarter geometry used by Tsutsui for HFSS simulations)

Elias Métral, RLC meeting, 14/11/2005

TSUTSUI'S RESULTS

MY (WITH THE HELP OF AG) RESULTS

LONGITUDINAL IMPEDANCE

TSUTSUI'S RESULTS

MY (WITH THE HELP OF AG) RESULTS

HORIZONTAL IMPEDANCE

GREEN = IMAGINARY PART

TSUTSUI'S RESULTS

MY (WITH THE HELP OF AG) RESULTS

VERTICAL IMPEDANCE

GREEN = IMAGINARY PART

APPENDIX 1: L (coaxial wire method)

APPENDIX 2: X (double wire method)

APPENDIX 3: Y (double wire method)

APPENDIX 4: IMPEDANCE DEDUCED FROM THE SCATTERING PARAMETER S₂₁

Longitudinal

S₂₁ is deduced from HFSS

$$Z_{l} = -2 Z_{ch} \log \left(\frac{S_{21}}{S_{REF}} \right)$$

$$Z_{ch} = 60 \log \left(1.27 \frac{b_{1}}{Radius_{wire}} \right)$$

$$S_{REF} = e^{-j\omega \frac{L}{c}}$$

$$S_{reF} = e^{-j\omega \frac{L}{c}}$$

$$Transverse$$

$$Z_{\perp} = -2 Z_{ch} \frac{c}{\omega \operatorname{dist}_{wires}^{2}} \log \left(\frac{S_{21}}{S_{REF}} \right)$$

$$Z_{ch} = 120 \operatorname{ArcCosh} \left(\frac{\operatorname{dist}_{wires}}{2 \operatorname{Radius}_{wire}} \right)$$

$$S_{REF} = e^{-j\omega \frac{L}{c}}$$

$$S_{REF} = e^{-j\omega \frac{L}{c}}$$