highlights from RPIA 2006

workshop themes selected slides

http://conference.kek.jp/rpia2006/

workshop themes

review talks

accelerator complex

linac/injector, beam conditioning, hybrid accelerator key items

- magnetic materials, switching elements (Thyratron, IGBT, MOSFET, SIThy, SiC-MOSFET), switching power supply/pulse modulator, induction accelerating cell (field calculation, cooling, impedance), beam monitoring & orbit control
- beam dynamics
- other applications of rapid switching devices
- applications of induction accelerators and superbunches

working groups: (1) KEK as testbed for induction-based fast bunch rotation in HEDP, (2) comparison of ion sources and injectors, (3) assessment of the wire lens@LHC from the current pulse power technology point of view, (4) comparison of different barrier rf systems, (5) For HEDP compare KEK-PS and LBNL-NCDX2.006

Review Talks

Status of **KEK Induction Synchrotron** Project (Takayama, KEK) **RHIC Upgrades with Superbunches** (Fischer, BNL) High-Energy-Density Physics Researches based on Induction Accelerator and Pulse Power Technology (Horioka, TIT) Overview of Recent progress in the Heavy Ion Fusion Science at Virtual National Laboratory (Barnard, LLNL) **RIKEN RI Beam Factory** Project (Yano, RIKEN) Status of the **DARHT 2nd Axis** at Los Alamos Laboratory (Nath, LANL) Possible Uses of Rapid Switches and Induction RF for an LHC Upgrade (Zimmermann, CERN) Bunch Compression and Stretching using Barrier **RF System at FNAL** (Bhart, FNAL)

Other Talks of Interest

Researchers on Multi-pulse Generation at IFP (Zhang, IFP) Possibility of Laser Ablation Plasma as a High-Flux Ion Source for Induction Accelerators (Nakajima, TIT) Physics Designs of a High-Gradient Dielectric Wall Induction **Linear Accelerator** for Radiography (Chen Yu-Jiuan, LLNL) **Pulse Line Ion Accelerator** (Briggs, SAIC) Inductive load broadband rf system and its application in FNAL Main Injector (Chou, Fermilab and Tagaki, KEK) High Gradient Induction Cells Based on Advanced Insulators & Dielectrics (Caporaso, LLNL) FAIR RF Systems based on Magnetic Alloys (Huelsmann, GSI) Development of the ILC kicker (Naito, KEK) Solid-State Inductive Adders for Fast Kicker (Cook, LLNL) Key features of All-ion Accelerators (Takayama, KEK) Possible Applications of Induction Synchrotrons (Oguri, TIT) U. Dorda, H. Qin, Shimosaki, K. Torikai, FZ (on CLIC),...

RHIC upgrades – eRHIC \geq 2014

eRHIC linac (ERL)-ring design

(also pursue ring-ring design)

Main design parameters:

- center-of-mass energy 30-100GeV/n
- e-p luminosity 10³²-10³⁴cm⁻²s⁻¹
- e-Au luminosity 10³²-10³⁴cm⁻²s⁻¹
- longitudinally polarized electrons, protons, and possibly light ions

Superbunches in RHIC

Possible application for superbunches in RHIC

Wolfram Fischer

- Transition crossing
 → limited by instabilities
- Heavy ion luminosity
 → limited by burn-off with e-cooling
- Polarized proton luminosity
 → limited by beam-beam and IBS

Assume in the following that superbunches can be made at store, filling half the circumference. [The following-scenarios-are wildly optimistic.]

Transition crossing in RHIC

Focusing-free transition crossing (FFTC) in RHIC:

- Ramp-down normal rf voltage to avoid bunch shortening
- Accelerate through transition with induction cell
- \rightarrow Need 48kV/turn at normal dB/dt (can be slowed down)
- → Induction acceleration ±10s around transition, would also require barrier buckets, (can avoid barrier buckets for ±125ms) [calculations by J. Wei, BNL]

\rightarrow Would allow to double the bunch intensity

K. Takayama, J. Wei, Y. Shimosaki, and K. Torikai, "Focusing-free transition crossing in the RHIC using induction acceleration", PAC05.

Wolfram Fischer

Hadron colliders at burn-off limit

Luminosity increase at the burn-off limit

- 1. Increase bunch intensity $N_{\rm b}$ and emittance $\varepsilon_{\rm n}$ at the same rate (N_b/ $\varepsilon_{\rm n}$ =const)
 - $\rightarrow L \sim N_{\rm b}$
 - \rightarrow maintains beam-beam parameter ξ /IP
 - \rightarrow limited by beam size in final focus triplet
- 2. Increase number of bunches N
 - $\rightarrow L \sim N$
 - $\rightarrow N \rightarrow \infty$ = superbunches
 - → limited by e-cloud (benign for superbunches), stored energy, ...

Wolfram Fischer

RHIC heavy-ion luminosity with 3 superbunches

• 2 IRs uncrossed (for e-cooling & eRHIC)

 3 superbunches/ring (~1µs abort gap)

• half circumference filled with beam

Wolfram Fischer

RHIC heavy-ion luminosity with 3 superbunches (II) Wolfram Fischer

Heavy ions are burn-off limited, not beam-beam limited.

		RHIC II	SuperRHIC	comment
Energy	${\rm GeV}/n$	100	100	
Number of bunches N		111	3	6-fold symmetry
Bunch intensity $N_{\mathfrak{b}}$	10^{9}	1.0	800	same peak current (limit at γ_t -crossing
Bunch length l_{b}	m	0.3	600	rms (RHIC II), full (SuperRHIC)
Average beam current I_{b}	А	0.11	2.4	
Full crossing angle α	mrad	0.0	0.5	possible with existing correctors
Peak luminosity \mathcal{L}/IP	$10^{26} \mathrm{~cm}^{-2} \mathrm{s}^{-1}$	80	1200	6
Average luminosity £/IP	10 ²⁶ cm ⁻² s ⁻¹	70	1100	requires major e-cooling upgrade
Number of IPs $n_{\rm IP}$		2	2	
Lifetime τ	h	5	5	

Experiments need to be sold on superbunches. Timing system different from existing one (large investment).

Hadron colliders at beam-beam limit

- Luminosity increase at the beam-beam limit (same strategy as for the burn-off limit)
- 1. Increase bunch intensity N_b and emittance ε_n at the same rate $(N_b/\varepsilon_n=\text{const})$ $\rightarrow L \sim N_b$
 - \rightarrow maintains beam-beam parameter ξ /IP
 - \rightarrow limited by beam size in final focus triplet
- 2. Increase number of bunches N
 - $\rightarrow L \sim N$
 - $\rightarrow N \rightarrow \infty$ = superbunches
 - → limited by e-cloud (benign for superbunches), stored energy, …

Wolfram Fischer

RHIC polarized proton luminosity with 4 superbunches Wolfram Fischer рſ p↓ • 2 IRs uncrossed (for e-cooling & eRHIC) New detector IP2 IP10 • 1 dedicated new detector • 4 superbunches/ring p↓ for spin patterns (~1µs abort gap) **IP8** • half circumference IP6 filled with beam

Polarized proton luminosity with 4 superbunches (II)

Requires beam-beam compensation

		RHIC II	SuperRHI C		comment
Energy	GeV/n	250	250	250	
Number of bunches N		111	4	4	for all spin combination
Bunch intensity N_{b}	10^{11}	2.0	1500	3000	limited by $\Delta Q_{bb,tot}$
Bunch length l_{b}	m	0.15	480	480	rms (RHIC II), full (SuperRHIC)
Average beam current I_{b}	А	0.28	7.5	15	
Full crossing angle α	mrad	0.0	0.5	0.5	possible with existing correctors
Beam-beam parameter $\xi/I\!P$		0.012	0.012	0.025	limited by $\Delta Q_{bb,tot}$
Peak luminosity L/IP	$10^{34} \text{ cm}^{-2} \text{s}^{-1}$	0.07	2.2	8.85	
Average luminosity £/IP	$10^{34} \text{ cm}^{-2} \text{s}^{-1}$	0.05	1.6	6.3	requires major cooling upgrade
Number of IPs n_{IP}		2	2	2	
Luminosity lifetime $\tau_{\mathfrak{L}}$	h	3	3	3	dominated by beam-beam, IBS

Wolfram Fischer

Very challenging [needs doubling of proven △Q_{bb,tot} & cooling at store] 9× LHC design luminosity 130× RHIC II luminosity (pre-cooled p-beams) 10,000×mmerneur, contreent, huminosity

FERMILAB, the World's Pre-eminent HEP

RPIA 2006, March 7-10, 2006

Chandra Bhat

Bright Proton Bunches for Tevatron to increase ppbar Luminosity (future)

George Caporaso

RIKEN's Old Cyclotrons (1937 ~ 1990)

Multi-disciplinary Utilization

50th Anniversary of RI production (1990)

第1号サイクロトロン 磁極直径65cm わが国最初のサイクロトロン 1st cyclotron Magnet diameter 65cm The first cyclotron in Japan

第2号60インチサイクロトロン 磁極直径150cm 2nd 60inch cyclotron Magnet diameter 150cm

Yasushige Yano

(1952) Sagane (Old RIKEN

第3号サイクロトロン 磁極直径65cm 3rd cyclotron Magnet diameter 65cm

第4号160cmサイクロトロン 磁極直径210cm わが国初の重イオン加速器 4th 160cm cyclotron Magnet diameter 210cm The Japan first Heavy Ion Accelerator (1967 ~ 1990)

Nishina Center for Accelerator-based Science since April 2006

Yasushige Yano

科学技術週間 http://stw.mext.go.jp/ 製作·著作:文部科学省 企画·制作:株式会社化学同人 2005年3月25日 第1版発行 ●監修:日本化学会,日本物理学会,日本薬学会,
 ●企画協力:玉尾皓平(京都大学化学研究所),桜井
 ●制作協力:高野幹夫,横尾俊信,金光義彦,小野
 ◆大学),高尾正敏(松下電器産業株式会社),壬生
 ●イラストレーター:山崎猛

●参考 11 税利 34、行業 111 (6新知識), 開設147-0-(5-23(1997), 2) John Emailey, Watards Building Booka: An A-2 Guida to the Elements, 'Oxford University Press (2001): 1128 (現代, 行業の24(5), 2003), 43) Altert Stwerba, 'A Guide to the Elements (second edition), 'Oxford University Press (2002), 4) 開設24, 第一方(市場), 長葉(1994), 5) 慶志元年, 行業 (34), (1994),

Layout of RIBF RI beam separator

Superconducting Ring Cyclotron (SRC) (world first)

K2500-MeV Superconducting Ring Cyclotron (SRC)

Assembling SRC Nov. 2004

Superconducting Sector Magnet Unfolding diagram Upper Yoke Cryostat Upper Wall Upper Pole 1 **Connecting Plate** Upper Pole 2 Superconducting Main Coil Superconducting Trim Coil Cryostat Side Wall Normal Trim Coil Beam Chamber Return toke Lower Yoke

BigRIPS first stage

Yasushige Yano

5000 tons concrete shielding is mounted here above the 1st stage of the BigRIPS

Construction Schedule

Yasushige Yano

	FY 2004	FY 2005	FY 2006				
	4 10	4 10	4 10				
	Fabrication of magnets, RF resonators, va	cuum system and beam daignostics system					
fRC		Assembly, magnetic f	eld measurement and RF power test				
	Assembly of vacuum system, cabling and plu	mbling Cabling of RF system and assemb	y of beam diagnostics				
IRC	Excitation test of magnets	and evacuation test RF power test					
	Assembly of magnets						
SRC		Test of cool-down and ex Magnetic field	citation of magnets measurement sembly of RF resonators, vacuum system and diagnostics				
	Test cooling of STQ1-5 Field r	neasurement Assembly, cabling and testir	g of magnets				
BigRIPS	Cool-down of STQ6-14 Radiation shields						
	Focal plane chamber, beam diagnostic devices and vaccum system	Beam dump and production target	Control, detectors and DAQ				
		Fabrication, assembly and cabling, testing o	fmagnets				
RI-beam delivery line	Foc vac	al plane chamber, beam diagnostic devices, cum system, and radiation shields	Control, detectors, DAQ				
Beam	Fabrication, assembly, cabling and testing o	f magnets, chambers, beam diagnostic devic	es and vacuum system				
Transport	e						
Note	 Permission for producing uranium ions in the ECRIS 	★ Completion of the experimental hall	Commisioning of the				

The first beam is scheduled for at 15:34 on Dec.16 in 2006

The <u>Dual Axis Radiographic Hydro Test Facility is</u> located at the Los Alamos National Laboratory

DARHT consists of two induction linear accelerators oriented orthogonal to each other.

DARHT 2nd Axis - SN RPIA March 9, 2006 3

Subrata Nath Frank Zimmermann, RLC 17.03.2006

The DARHT Facility will deliver dual-axis, multi-pulse radiography by mid 2008

DARHT 2nd Axis - SN RPIA March 9, 2006 20

Subrata Nath Frank Zimmermann, RLC 17.03.2006

Schematic View of Induction Synchrotron

Revolution frequency and Switching frequency

revolution frequency:

$$f=c\beta/C_0$$

$$f = \frac{c}{C_0} \sqrt{\frac{D}{1+D}}$$
$$D = \left(\beta\gamma\right)^2 = \left[\left(\frac{Z}{A}\right)\left(\frac{e\rho}{mc}\right)\right]^2 B^2(t)$$

$$\beta \gamma = \left(\frac{Z}{A}\right) \left(\frac{e\rho}{mc}\right) B$$

kinetic energy as a function of the revolution frequency: **Defect of the induction acceleration driven** by the switching power supply:

Induction step voltage can't follow $V_{acc}(t)$. It must be constant, V_{θ} , from a technical reason that it is difficult to change an output voltage of the DC power supply within tens of mseconds.

Counter measure: intermittent switching instantaneously averaged switching frequency g(t)

 $\Delta E: \text{ energy gain per short time-period } \Delta t$ $g(t) = (V_{acc}(t)/V_0)f(t)$ $\Delta E = \int_{t}^{t+\Delta t} eV_{acc}(t')f(t')$ $= eV_0 \int_{t}^{t+\Delta t} g(t')dt'$

$$T = Mc^{2}(\gamma - 1) = A \cdot mc^{2} \left(\frac{1}{\sqrt{1 - \beta^{2}}} - 1\right) = A \cdot mc^{2} \left(\frac{1}{\sqrt{1 - \left(\frac{f \cdot C_{0}}{c}\right)^{2}}} - 1\right)$$

Control of the gate pulse density
(Patent 2005-196223)

Ken Takayama

Transverse Focusing in the AIA

Equation of motion in the transverse direction: Easy accelerator tuning for any ions

Ken Takayama

Comparison between various accelerators

Energy E/au	Static Accelerator	RFQ+DTL	Induction Linac	Cyclotron	RF Synchrotron	All-ion accelerator (Ind. Synchrotron)	
Low < MeV	No limit	Limited Z/A	No limit	limited Z/A charge state	limited Z/A	No limit	
Medium <gev< td=""><td>NA</td><td>Limited Z/A (expensive)</td><td>No limit (expensive)</td><td>limited Z/A charge state</td><td>limited Z/A</td><td>No limit</td></gev<>	NA	Limited Z/A (expensive)	No limit (expensive)	limited Z/A charge state	limited Z/A	No limit	
High >> GeV	NA	Limited Z/A (too expensive)	No limit (too expensive)	NA	No limit but limited by Injector	No limit	
A 10 ⁵ Insulin A 10 ⁵ Insuli							

All-ion Accelerator Complex

Ken Takayama

RLNR/Tokyo-Tech Heavy-Ion ICF Research Group

"All-Ion Accelerator" (AIA) is one of the possible ways to obtain GeV-biological macromolecular ion beams.

Conventional RF accelerators \rightarrow not available (no synchronization)

- Induction linacs \rightarrow very long (\approx 500 m ?), expensive (\approx \$10⁸ ?)
- Acceleration by induction synchrotron:
 Modification of existing proton synchrotrons

RLNR/Tokyo-Tech Heavy-Ion ICF Research Group

Measurement of energy loss of GeV macromolecular ions in a thin foil will be the first beam experiment.

"Nano-joule, nano particle" irradiation experiment:

RLNR/Tokyo-Tech Heavy-Ion ICF Research Group

The size of the heated volume is large enough to be a "plasma", not simply an electron-ion mixture.

Conclusions: The KEK-AIA facility will be a unique and useful tool for high energy-density sciences.

- GeV-TeV biological macromolecules \rightarrow a novel energy driver
- KEK-AIA ("All-Ion Accelerator") as a macromolecular ion beam facility:

(Very rough, typical value)

Macromolecular/cluster beam facility	Projectile	Energy	Intensity	Vacuum	
MP tandem (Orsay)	C_{60} , Au _n etc.	< 100 keV/u	$< 10^{6}$ ions/cm ² /s	≈ 10 ⁻⁷ Torr	
600 kV Cockcroft-Walton (BNL)	Biological	<1 keV/u	?	≈ 10 ⁻⁷ Torr	
ELISA (Aarhus)	macro-		< 10 nA	- 10-11 Torr	
ESRING (KEK)	molecules	< 100 eV/u	≈ 100 nA	≈ 10 ··· 1011	
DESIREE (Stockholm)		19 -	?	5×10 ⁻¹² Torr	
AIA = Booster + PS (KEK)	M < ≈ 10 ⁵	< 100 keV/u	?	≈ 10 ^{_8} Torr	

Preliminary experiments using MeV (↔ keV/u) beams from "Booster":

- Realistic vacuum requirement: e.g. for Insulin (M = 5,800, 2R = 2.7 nm),
 - $q = 5 + \rightarrow E = 3.3 \text{ MeV} (0.57 \text{ keV/u})$
 - · $\sigma_{\text{loss}} \approx 5.7 \times 10^{-14} \text{ cm}^2 \rightarrow \rho_{\text{RG}} \approx 9 \times 10^{-10} \text{ Torr} \approx 10^{-9} \text{ Torr}$
- Nuclear stopping regime \rightarrow Industrial applications (?)

Fast Pulser for ILC Kicker, burst rate 3 MHz, 15000 pps, <3 ns rise time Adder Conceptual Layout

many drive circuits & transformers

Ed Cook

3/8/06 Ed Cook 11

WG3 – "LHC Wire Lens"

Frank Zimme

summary of WG3 discussion

- developed circuit diagram of switching device
- 4 MOSFET switches, 2 or 3 power supplies with 10⁻⁴ stability, 2 resistors, 1 or 2 capacitors, arbitrary waveform generator w multiple outputs
- rather low cost
- timing jitter may or may not be a problem
- radiation hardness to be checked
- transmission line effect (impedance, reflection, etc.) to be addressed
- plan to build prototype(s) at CERN; beam test at RHIC in 2008
- alternative wide-band rf approach implies much more heating and parallel/serial MOSFETs
- check jitter of RHIC & LHC timing systems