
EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH
CERN - SL Division

CERN-SL-96-64 AP

On the Landau Damping and Decoherence of Transverse
Dipole Oscillations in Colliding Beams

Y.I. Alexahin*

Abstract

Coherent transverse dipole oscillations in colliding head-on non-rigid
bunches are studied using the Vlasov equation. The corresponding eigenvalue
problem is solved numerically in the case of round Gaussian bunches of equal
size but with not necessarily equal intensities. Transition from the weak-strong
to the strong-strong cases is found at the intensity ratio of about 60% when a
discrete �-mode frequency emerges from continuum of eigenfrequencies
related to the beam-beam tunespread in the weaker bunch.

In the strong-strong case the large coherent beam-beam tuneshift
dominates over interchange processes between coherent and incoherent
motion; it can switch off Landau damping of dipole transverse oscillations,
slows down incoherent emittance growth due to external kicks on the beams.
The consequences for the transverse feedback operation in collision are
discussed.
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1 Introduction
Suppression of coherent oscillations and emittance growth in colliding beams is essential

for achievement of highest luminosities in large hadron colliders like LHC [1]. Therefore it is
important to understand the effect of beam-beam interaction on decoherence and Landau
damping of coherent transverse oscillations. The previous analytical and numerical studies [2,3]
were carried out for the weak-strong case whereas in the future LHC a truly strong-strong
regime of collisions is envisaged.

An adequate approach to the strong-strong case was developed by K.Yokoya et al. in
Ref.[4] where an eigenvalue problem for the Vlasov equation was formulated and studied in the
case of  head-on colliding beams. Spectrum of the �-component of dipole oscillations was shown
to consist of a discrete line shifted from the single particle tune by 1.2�� (for round beams) and
continuum (0,�) corresponding to the incoherent beam-beam tunespread, � being the linear beam-
beam parameter.

Due to the gap between coherent and incoherent tuneshifts the beam-beam interaction in
the strong-strong case not only fails to produce Landau damping by itself, but at sufficiently large
values of � can switch off the stabilizing effect of momentum spread and the machine
nonlinearity. As the consequence even very weak transverse instabilities may show up.

A question may arise why this effect has not been observed in the existing hadron
colliders (Tevatron, SPS). To answer it one should examine transition from the weak-strong to
the strong-strong case. This is done in Section 3 where the discrete �-mode frequency is found to
emerge from the continuum of eigenfrequencies at the intensity ratio of about 60% which may be
considered as the boundary value. This value normally is not surpassed in the existing machines.

Presence of the discrete �-mode in the strong-strong case drastically changes the process
of decoherence of dipole oscillations. As shown in Section 5 only about 18% of the energy
received from a kick at one of the beams is imparted into the continuum of eigenmodes leading to
irreversible emittance growth. The other 82% are carried by persistent �- and �-modes which
may decohere only on a much longer time scale due to nonlinear mode coupling (the �-mode can
be damped also by non-Gaussian tail particles).

The approach developed is used in subsequent sections in analysis of the colliding beams
emittance growth due to external noise and the transverse feedback operating in different
regimes.

2 Equilibrium state
Let us make a number of simplifying assumptions:

a) betatron tune spreads due to chromaticity and nonlinearity of the machine magnetic elements
are negligible as compared to  the beam-beam tune spread;
b) motions in x and y planes are uncoupled, with exception for nonlinear coupling via the beam-
beam force, the emittances being equal �x = �y = �0;
c) beams collide head-on and at only one interaction point (IP) in the ring;
d) the non-perturbed beams are round at the IP with equal r.m.s. radii �*;
e) the working point on the tune diagram is chosen sufficiently far from low order resonances so
that invariant tori are not destroyed by the beam-beam interaction
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First we introduce normalized to �0 action (Jx , Jy) and angle (�x , �y) variables via the
standard relations:
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Here �u, �u are the Twiss parameters, �x0, �y0 are betatron tunes in absence of collisions, R is the
average machine radius.

The next step is to solve nonlinear dynamics in colliding (but stationary) beams. Due to
assumption (e) new canonical variables (Iu , �u) can be found in which the unperturbed
Hamiltonian acquires the normal form
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where index k=1,2 refers to either of the two beams. Then Ix , Iy are the constants of motion
which can be employed in construction of the equilibrium distribution function which we presume
to be Gaussian (and normalized to unity):
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betatron tunes are given by expressions
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There are various representations of the function Q I Iu x y( , ) (see Ref.[4] for example), here we

will present without derivation one more formula that is useful in practical calculations
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where r=�y
�/�x

� is the beam aspect ratio (in the following r=1), In(x) is the modified Bessel
function of order n.

3 Eigenmodes of two colliding bunches coherent oscillations
Now let us introduce some perturbation of particle distribution and expand everything in

series w.r.t. its amplitude so that for the k-th beam

F F F H Hk
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Limiting our consideration to the first order in � (and in the perturbation as well) we can use
eqs.(1) with Ju = Iu , �u = �u in calculation of the perturbative part of the Hamiltonian due to
beam-beam interaction:
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For a while we will ignore other coherent forces created by impedances and feed-back.
Generally the solution of the linearized Liouville equation
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can be sought as expansion in the Fourier series

F e
I I

e
in im im

f I Ik x y x x x y y y

n m m
n m m

k
x y

x y
x y1

0 02( ) (

, ,
, ,
( )Re

( )/ ) ( )
( , , )=

− + + − + −⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
∑ θ ψ ν θ ψ ν θ

θ , (9)

where the factor exp[-(Ix+Iy)/2] was taken out in order to symmetrize the resulting integral
equation. But up to the first order in � there is no coupling between terms with different n, mx,
my. Also, the assumption (e) rules out the possibility of a higher order term to become large due
to small resonant denominator (such a case was considered in Ref.[5]). Therefore we may retain
in the sum (9) only one term, namely that with n=0, mx=1, my=0, since we are interested in the
horizontal dipole oscillations. These indices will be omitted in the following.

Taking average in eq.(8) over betatron phases, introducing the integral operator
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with the kernel defined in the Appendix and assuming without loss of generality the first beam to
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the function Qx  is given by eq.(6). Assuming  f �exp( )( )−i xξ λθ1  we finally arrive at the eigenvalue
problem formulated in Ref.[4]:

λf f= �A (13)

Operator �A acts in space DA of 2-tuples X=(X1, X2)
T which components are functions of

the action variables of the corresponding beam. This space can be metrized with the scalar
product

( ) ( )X Y, = +∗ ∗∫ X Y X Y dI dIx y1 1 2 2 (14)

Some general properties of the operator �A allow to make conclusions concerning its
spectrum. This operator is self-conjugate and bounded (but not compact owing to the
multiplicative Q-part) so that its eigenvalues are real, bounded and form a continuous set
(possibly with a discrete addition).

One particular solution of eq.(13) can be found analytically. It can be verified (see
Ref.[4])  that the function

Ψ0

2
( , )

( ) /
.I I I e

I I
x y x

x y=
− +

(15)

satisfies the integral equation
Q GxΨ Ψ0 0= � . (16)

Accordingly, eq.(13) has a solution
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with �=0. This eigenvalue belongs to the discrete part of the spectrum since the corresponding
eigenfunction has a finite norm (we have chosen �2). Physically it corresponds to the rigid �-
mode in which the beams oscillate in phase at the IP without changing their shape.

The other solutions can be found numerically. Let us start with a simpler case of equal
intensities, r�=1, when due to the symmetry between the beams space DA splits into an orthogonal
direct sum of two invariant subspaces corresponding to �-modes f f f( ) ( ) ( )1 2= = +  and �-

modes f f f( ) ( ) ( )1 2= − = − . Defining projecting matrices

� , �P P+ −=
⎛
⎝
⎜

⎞
⎠
⎟ =

−
−
⎛
⎝
⎜

⎞
⎠
⎟

1

2

1 1

1 1
1

2

1 1

1 1
(18)

we can present operator �A in the form
� � ( ) � ( )A P Q G P Q Gx x= − + ++ −� � . (19)

Accordingly, system (11) is reduced to decoupled eigenvalue problems for �- and �-modes:
λf Q f G fx

( ) ( ) ( )± ± ±= � � . (20)
Owing to the Q-term each of  equations (20) has a solution for any ��(0,1). To get a

notion of the form of the corresponding eigenfunctions it is convenient to introduce new variables
q = Qx(Ix , Iy), � = arctan( Ix /Iy). It is obvious then that an arbitrary function h(�) will generate a
pair of eigenfunctions satisfying the equations

Ψ Ψλ λλ
χ δ λ( ) ( )p.v. ( ) ( )± ±=

−
⋅ + ⋅ −� �

1

q
G h q . (21)

Therefore every eigenvalue from the continuum ��(0,1) has an infinite multiplicity. Choosing an
appropriate set of functions {hn(�)}, where n =1,2,... is the number of nodes, we can construct
two families of eigenfunctions satisfying the orthonormality condition

Ψ Ψλ λ δ δ λ λn x y n x y x y nnI I I I dI dI( ) ( )( , ) ( , ) ( )±
′ ′
±

′∫ = − ′ . (22)

The physical meaning of these eigenmodes can be understood on the analogy of the
Shottky noise. The term with h(�) in the r.h.s. of  eq.(21) gives some prime perturbation of
particles with a particular tune while the first term describes collective response of the other
particles.  So these modes are incoherent in their origin.
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As found in Ref.[4] there is a discrete
eigenvalue, � = �0 � 1.214 in the case of round beams
(r = 1), for the �-oscillations as well which
corresponds to a truly coherent motion1. To
understand the character of this mode let us introduce
function d(x,y) which describes non-rigidity of bunch
oscillations. With its help the charge density of the
perturbed beam can be expressed through the
equilibrium density as

~( , ) ( ( , ), )ρ ρx y x x d x y yc= −0 ,
where xc is displacement of the beam barycenter. For
the beam shifted as a whole d(x,y)�1. Figure 1 shows
function d(x,y) for the discrete �-mode obtained by the
Fourier-Laguerre expansion method of Ref.[4].

As can be seen in Fig.1 in this mode of
oscillations mainly particles with small betatron
amplitudes participate which are strongly affected by
the movements of the opposing beam. This explains
the large value of the coherent tune shift.

It is clear that in the weak-strong case (r��0)
such a mode does not exist (in contradistinction to the
discrete �-mode which exists at any value of the
intensity ratio r�). Therefore it seems interesting to
trace at what r� the discrete eigenvalue emerges from
the continuum �=(0,1) which corresponds to the
incoherent tune spread in the weaker beam. Fig.2
shows dependence on r� of the largest eigenvalue �max

found by numerical integration of eq.(13). The
trapezoid rule was used for integration with the
number of points in (Ix, Iy)-plane equal to Np=
17�18=306 (the number of points in Ix-direction was

less by one since it had been possible to exclude points with Ix=0 where all eigenfunctions tend to
zero).

Nascence of the discrete eigenvalue is clearly seen at 0.55<r� <0.6. Starting from the value
�max =0.978 corresponding to the maximum Qx value in the mesh points with the chosen Np, �max

keeps practically constant2 until r� � 0.55 where a steep rise begins. Transition of �max from
continuum to point spectrum can be confirmed by the dependence on Np of the scalar product of
the corresponding eigenfunction with a well-behaved function, e.g. the 2-tuple (�0, -�0). For the
continuum modes this product should behave approximately as Np

-1/2, whereas for a discrete
mode it should be practically independent on Np. According to this criterion the discrete
eigenvalue appears at  r� � 0.6.

4 Spectral  expansion
Since the operator �A is not degenerate its eigenfunctions form a complete basis in DA. We

will limit the following analysis to the case r� =1 only. In this case the eigenmodes split into �-

                                                       
1In principle there could have been a larger (but finite) number of discrete eigenvalues.
2In contrast to what was found in Ref.[4]. The difference may be a consequence of a slow convergence of the
Laguerre-Fourier series used in Ref.[4] for the continuum modes.

d(x, y)

 x/�� y/��

Figure 1.  Function d(x,y) for the discrete �-
mode
�max

r�

Figure 2  Largest eigenvalue �max  vs.  intensity
ratio r�
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and �-families with spectrum of each family comprising continuum ��(0,1) and one discrete
eigenvalue, � = 0 for �-modes and � = �0 � 1.214 for �-modes. Every eigenvalue from the
continuum has infinite but countable multiplicity. Correspondingly, the spectral expansion of
operator �A (and its powers including the identity operator �I ) is the Stieltjes integral
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and the projecting integral operators

E f I I I I f I I dI dIn
n

x y n x y x y x yλ λ λ
( ) ( ) ( )( , ) ( , ) ( , )± ± ±= ′ ′ ′ ′ ′ ′∑ ∫� Ψ Ψ (25)

were introduced.  The sum in eq.(25) is reduced to one term if � belongs to the point spectrum.
Using representation (23) we can perform expansion in terms of the operator �A

eigenfunctions:
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are eigenvectors of the projecting matrices (18). Solution of the initial-value problem for eq.(11)
is then given by eqs.(26) and

a e i an n x xλ λθ ξλθ ξ ξ ξ( ) ( ) ( ) ( )( ) ( ) ,± ±= − ≡ =0 1 2 (28)
As a rule it is not the distribution function itself which presents the most interest but some

integral characteristics of the beams, such as the barycenter displacement, emittance etc.
To describe the barycenter motion let us introduce the complexified Courant-Snyder

variable

η
β α
β ε

=
+ +x i p xx x x

x

( )

0

(29)

Making use of eqs.(1), (9), (15), we obtain the following expression, correct to the first order in
�, for the centroid of the k-th beam
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where

c I I I I dI dIn x y n x y x y( ) ( , ) ( , )( )λ λ= −∫Ψ Ψ0 (31)

Since �0 is the eigenfunction corresponding to the discrete �-mode, the other (continuum) �-
modes being orthogonal to �0 do not enter eq.(30).
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The coefficients (31) play the key role in the
subsequent analysis. It will be shown that the sum

s cn
n

( ) ( )λ λ= ∑ 2 (32)

describes spectral density of dipole oscillations. With the
use of the particular property (16) of function �0 a few
moments of s(�) can be found analytically
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(the first one being just the Parseval identity) to serve
for the accuracy control of numeric calculations.

When eigenfunctions are found numerically, their
coefficients exhibit chaotic dependence on the
eigenvalue (see Fig.3) since eigenfunctions for close but
different � should describe all variations in � that are
possible with the given number of mesh points Np.
Hence to obtain a smooth function s(�) one should
perform summing over sufficiently large intervals ��.

Fig.4 shows function s(�) in the continuum range
which was obtained with ��=0.025 from the numerical
data presented in Fig.3 in such a way that integration of
functions s(�), �s(�), �2s(�) by the Simpson rule gives
locally the same result with direct summation of

coefficients over each paired step 2��. The total values of moments (33) found numerically with
Np = 306 were 0.9995, 0.9993, 1.0980. Oscillations of s(�) in Fig.4 have no physical implication
and can be reduced by increasing the number of points Np and/or integration intervals ��.

For the discrete �-mode
s0 � s(�0) = c2(�0) � 0.645. (34)

5 Beam response to a kick
Let us consider the effect of a kick received by one of the beams (the first one for

certainty) at �=�0 assuming its magnitude, 	px, to be independent of particle position. Extracting
the part linear in 	px from the perturbed distribution function taken just after the kick
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we obtain the associated jump in the normalized first order distribution function which we present
in vector notations to make provision for kick on the other beam:
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where �0 is given by eq. (15). For the particular perturbation

     Δ Δ1
0

0
2 0= =δ

β θ
ε

px
x ( )

, .

It is obvious that � is just excited by the kick oscillation amplitude taken in the beam 
‘s.
The corresponding variation in the expansion coefficients is

c2(�)�103

�

Figure 3. Eigenmode coefficients vs. eigen-
values from the continuum range (0,1)
obtained with Np  =306

s(�)

�

Figure 4.  Spectral density of dipole
oscillations



10

δ θ
π

φ θ λ
λ

δ θ
π

φ θ λλ λa e
i

a e
i

cn
x

n
x

n
( ) ( )( )

( ) ,

,
, ( )

( )
( )+ + − −=

⋅
×

=
≠

⎧
⎨
⎩

=
⋅

0 2
0

0 2
0

4 2

1 0

0 0 4 2

u u
� �

Δ Δ
(37)

with cn(�) defined by eq.(31). For the beam barycenter motion from eqs.(30), (32) and (37)
follows

η θ φ θ φ θ ξλ θ θ λ λc
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i
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2
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where the first term in the square brackets corresponds
to the discrete (rigid) �-mode and the second one
describes contribution from all �-modes. Fig.5 shows
envelope (absolute value) of the �-modes contribution
(and separately contribution from the continuum modes
only) as a function of |�|N where N is the number of turns
N=�/2�. Contribution from the continuum modes smears
out in N �1/|�| turns leaving the discrete �-mode with
amplitude c(�0)�1/2. Envelopes of the total centroid
displacements shown in Fig.6 exhibit beatings due to
tune-split between the discrete �- and �-modes.

To find emittances of perturbed beams let us first
note that in the considered case of horizontal dipole
oscillations the first order Liouville equation can be
rewritten as

∂
∂ψ

∂
∂θ

ν
∂
∂ψ

∂
∂ψ

H

F

F F Hk

x

k

x

k

x

k

y

1

0

1 1 11( ) ( ) ( ) ( )

= − +
⎛

⎝
⎜

⎞

⎠
⎟ −          (39)

where F0 is the equilibrium distribution (3). Now we
have up to the second order in �

1

1

2

1
4 40

0
0 1 1 1

0
1

2 4 2

ε
ε
θ θ

∂
∂ψ

θ
π

θ

d

d
F F

dI

d
d F H d

d

d F
F d

d

d
f dI dI

x
k

k x k

x

k

k k
x y

( )
( ) ( ) ( )

( ) ( )

( )

( ) ( )

= + = −

= =

∫ ∫

∫ ∫

Ω Ω

Ω

where d d d dI dIx y x yΩ = ψ ψ . In the particular case of

initial conditions (37)

{ }ε
ε

ξλ θ θ λ λ λ λx s dw s dw
( , )

cos[ ( )] ( ) ( ) ( ) ( )
1 2

0

1
2

01
8

1 2= + ± − +− −∫∫Δ
(41)

The first and the third terms in curly brackets (equal due to the Parseval identity (33)) describe
relative partition of energy between �- and �-modes, the second term being the interference term
which cancels out in the sum for two beams. The total increment of emittance is �1

2/2. As follows
from eq.(41) only a small fraction of energy, namely (1-s0)/2�18%, is imparted into the
continuum modes leading to the irreversible emittance growth, the other 82% are carried by
discrete modes which in principle can be damped by a feed-back system.

6 Landau damping
Now let us include in the consideration linear elements reacting on the barycenter motion

of the beams, assuming them to be identical in both rings so that �- and �-modes remain
uncoupled. Also, for the present purposes we may uniformly distribute these elements over the
ring circumference and write for the elementary kicks produced by them

�

�

Δ ( )θ ζη θ= −i dc , (42)

|�c
(-)|/�

|�|N

- contribution from all �-modes

- contribution from the continuum

Figure 5.  Envelope of  the �-component  of
the beam centroid oscillations.

|�c
(1,2)|/�

|�|N

Figure 6. Envelopes of the total centroid
displacements after a kick at one of the
beams
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where � is a complex parameter related to integrated transverse impedance ��xZ� and/or feed-
back gain factor.

The  Liouville equation will now include a term associated with these kicks
∂
∂θ

ξ
δ
θ

f
= - f

f
i A

d
� + , (43)

where � f  is of the form (36) with 
�
Δ  given by eq.(42). Expanding eq.(43) in the eigenmodes we

obtain for the coefficients

a a i b d

a e i a i
c

e i b dn n
n

0 0 2
0

2
0

0
2 2

0
2 2

( ) ( )

( ) ( )

( ) ( ) ( ) ,

( ) ( )
( ) ( ) ( )

+ +
+

− −
−

= − ′ ′

= − − − − ′ ′ ′

∫

∫

θ
ζ
π

θ θ

θ ξλθ ζ λ
π

ξλ θ θ θ θ

θ

λ λ

θ (44)

where the slow varying coherent amplitudes were introduced

b e
i x

c± ±= ⋅( )
( )

( )θ φ θ η θ
1

2
u

�
(45)

From eqs.(30), (44) follow integral equations for coherent amplitudes (45). Solution for
the rigid �-mode is simply

a a e b ia0 0
2

00 2 2( ) ( ) ( )( ) ( ) , ( ) ( )+ +
+

+= =θ ζθ θ π θ , (46)
so that � is just multiplied by -i single-beam coherent tune shift. Equation for the �-component of
barycenter motion can be solved using the Laplace transformation:

b
i

e p b p dp b p
i

D p

c a

p i
dw

i

i
n n

− −
− ∞

+ ∞

−

−

−= =
+

∫ ∑∫( ) ( ) , ( )
( , )

( ) ( )
( )

( )

θ
π

θ π
ζ

λ
ξλ

λ
σ

σ
λ1

2

2 2 02

, (47)

where the dispersion function was introduced:

D p
s

p i
dw( , )

( )
( )ζ ζ

λ
ξλ

λ= −
+ −∫1 (48)

This function is analytical in the complex domain of p with exception of the point p = -i��0 where
it has the first order pole, and the cut on imaginary axis p� (0, i|�|). Zeros of the dispersion
function (if any) give tune shifts (generally complex) of free �-oscillations in colliding beams. In
the limiting case |�|�|�|�1 there is the unique solution

p i s0 0 0≈ − +ξλ ζ (49)
which shows some 35% reduction in the effect of external elements on the �-mode in comparison
with that on the �-mode (and a single beam oscillations as well). This reduction is merely the
consequence of partition of energy delivered by elementary kicks (42) between the discrete and
continuum �-modes and is not a form of the Landau damping.

It is important to note that although the continuum eigenmodes receive about 35% of
energy from every elementary kick, in the case of instability (Re�>0) there is no appreciable build
up of energy in these modes since the kicks are not in phase due to the large (compared to |�|)
gap between the discrete �-mode tune and the boundary of continuum. In the limit �Û	 from
eqs.(44), (47) follows for the ratio of expansion coefficients

a

a
i

c cn nλ θ
θ

ζ λ λ
ξ λ λ

( )

( )

( )

( )

( ) ( )

( )

−

− →
−

0

0

0

(50)

Correspondingly, in the considered limiting case |�|�|�| contribution of the continuum modes to
the beam emittance growth (40) is negligible, the latter being completely determined by the
discrete mode amplitude which testifies once more the absence of the Landau damping.

As follows from the above discussion the beam-beam tune spread does not provide the
Landau damping up to the first order in �. In a real beam, however, the �-mode can be damped
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by non-Gaussian tail particles if there are other sources of tune spread, i.e. the lattice nonlinearity
and chromaticity. This additional tune spread is of the order of 10-4 in machines like LHC which
is marginally sufficient for suppression of the transverse instabilities at the top energy. But it is
insufficient to span the gap between the discrete �-mode and incoherent tunes which has the
order of 10-3. As the consequence the discrete �-mode can become unstable when beams are put
into collision. The possibility of damping this mode due to nonlinear coupling to the continuum
modes is yet to be studied.

In conclusion of this section let us consider a hypothetical situation when interaction with
some external elements (e.g. reactive feed-back) produce sufficiently large positive coherent tune
shift, �� = -�� � -Im� > (�0-1)|�|, in order to bring the coherent tune within the continuum range.
Looking for the solution of the dispersion relation D(p, �)=0 in the form  p = � - i�	 and making
use of the Sohotsky formula

D i D i i
s s d

i s± − ≡ − ± = −
−

+
−

∫( , ) ( , ) [ p.v.
( )

( )]ξμ ζ ξμ ζ
ζ
ξ λ μ

λ λ
λ μ

π μ0 1 0

0 0

1

� (51)

we obtain in the limit |�|�|�| for imaginary and real parts of the dispersion relation
s s d

s
s0

0 0

1

2
0

2

0

2

2λ μ
λ λ
λ μ

ξζ
ζ

α
λ μ ξ ζ

ζ
πξ μ α

−
+

−
= −

′′
=

− ′
−∫p.v.

( )
,

( )
[ ( ) sgn ] (52)

where it was assumed that 	 defined by the first equation falls within the range (0,1). For
�
<�s(	)|�|2/|�| the second equation (hence the dispersion equation on the whole) has no solution
which means that the �-mode is completely Landau damped. But one should realize that large
positive coherent tune shift due to external elements would switch off the Landau damping of the
�-mode (if there had been any).

7 Emittance growth in presence of low gain linear feedback
The developed formalism can be employed in analysis of emittance growth in collision

regime due to noise and its suppression by a feedback system. The damping effect of a low gain
linear feedback on a single beam in absence of collisions can be described by simply putting � =
 - g/4� in eq.(42), where g is the feedback gain factor. We will assume that both rings have
independent feedback systems with equal gain factors.

Let us first consider the evolution of the modes after a kick. The dependence of the
expansion coefficients on time can be found from eqs. (44)-(48) with initial conditions given by
eqs.(37). Solution for the �-mode is just exponential fall-off. The Laplace transform of the �-
mode coefficient is

a p e
i p c

p i D p gn
x n

λ
φ θ θ

π
λ

ξλ π
( ) ( )

( ) ( )

( ) ( , / )
− −= − ⋅

⋅
⋅

+ −
0 0

24 2 4

u
�

Δ
. (53)
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For all � including the discrete eigenvalue �0 it has a pole in the left
half-plane, Rep<0, corresponding to zero of the dispersion function
p0. For � from the continuum (0,1) there is also a pole at p� = - i��
lying strictly on the cut (see Fig.7), whereas for �=�0  there is no
additional pole since the denominator in eq.(53) does not vanish at p
Û - i��0. Therefore in the limit �Û� only the continuum modes
persist, both �- and �- discrete modes are damped to zero.

To determine asymptotical behavior of the continuum modes
at �Û� let us deform the path of integration in the complex p-plane
as shown in Fig.7, threading it into and out of the cut and encircling
the pole at p� = - i��. For D(p, �) inside the cut we must take its
analytic continuation from the right side of the cut where it is given
by the Sohotsky formula (51) with the upper sign. In the limit �Û�
contribution from the parts of the contour lying in the left halfplane

vanish leaving us with the residue in the pole p� 

a e
i i c

D i gn
x n

λ θ ξλ θ θ φ θ
π

λ
ξλ π

( ) ( )
( ) ( ) ( )

( , / )
− −

+→ − − + ⋅
⋅

⋅
− −

0 0
24 2 4

u
�

Δ
. (54)

Now with the help of eqs.(26), (40) we can calculate the final emittance values after the
kick which turn out to be equal for both beams no matter which one was kicked (the first beam
assumed beneath). The emittance increment can be written in the form

Δε Δx
n

n
a d s S g

( , )
( )lim ( ) ( ) ( / )

1 2

0

4 2

0

1
1
2

04
8

1 2
ε

π θ λ πξ
θ

λ→ = −
→∞

−∑∫ (55)

where

S x
s

s d

x
s

x s s d
( )

( )

[ ( )] [ p.v.
( )

]

=
−

+ +
−

+
−

∫
∫1

1
1

2 4
0 2

2
0

0 0

1
20

1 λ λ
π

λ
λ λ

μ μ
μ λ

. (56)

Let us explain the factors in the r.h.s. of eq.(55). The
total energy imparted by the kick is shared by the two
beams which makes �1

2/4  for each beam (on average
over the beatings period). This value is divided equally
between �- and �-modes. Due to the feedback with
whatever small but finite gain factor the discrete �- and
�-modes are damped so that only the continuum �-
modes can contribute to the emittance growth; their
relative share in the kick energy being initially equal to
(1-s0)/2. The function S(g/2�|�|) which graphics is shown
in Fig.8 describes the effect of the feedback on the
continuum modes. With an accuracy of better than 18%
at all values of x the following approximation is valid

S x
x

( )
( )

≈
+
1

1 2 . (57)

These results can be compared with the weak-strong case formulas of Ref.[2] which in
the present notations look as

Δε Δ
Δεx

w s x w s x xS g S x
x

Q
x

( )
( )( / ), , ( )

.weak
strong

ε
π ξ

0

1
2

1 2
2

22
2 0

4 012
2= = ≈ ≈− − >>

,     (58)

Rep

Imp

p0

p�

Figure 7.  The integration
path

g/2�|�|

S

Figure 8. Continuum modes suppression
factor due to feedback.
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where the bar denotes averaging over the weak beam It can be seen that the feedback system in
the strong-strong case is by an order of magnitude less efficient in suppression of the continuum
modes so that in the limit g�2�|�| the emittance growth in each beam appears to be almost as
high as that in the weak beam of the weak-strong pair. This lack of the feedback efficiency is
caused by interference from the discrete �-mode which drastically increases the effective tune
spread.

The present analysis can be extended on the case of multiple kicks received by both
beams. Then the Laplace transform of the mode expansion coefficients will be given by a
superposition of terms of the form (53) with  the corresponding values for �0 and 

�

Δ . If the noise
is a continuous process then the discrete modes being sustained by successive kicks do not vanish
but remain bounded whereas the continuum modes may grow until nonlinear effects come into
force.

Let us consider the growing modes limiting ourselves to the case when the noise is
introduced by a single short element located at �=�0 in one of the rings. Denoting by �1

(k) the
normalized kick magnitude (see eqs.(36) for definition) received at the (k+1)-th turn we obtain
for the growing part of the expansion coefficient (54)

a e
i i c

D
e

i k
n

x n k x

k

N

λ θ ξλ θ θ φ θ λ
π

π ν ξλ( ) ( )( )
( ) ( ) ( ) ( )−

+
=

−
→ − − + ⋅ +∑0 0

2 1
0

0

1

4 2
2Δ (59)

where N=Integer[(�-�0)/2�]+1 is the number of passages through the noisy element. We will
proceed further in the assumption that the noise can be described as a stationary stochastic
process with the normalized correlation function R(�):

Δ Δ Δ1 1
2 2 0 1( ) ( ) [ ( )], ( )k l R k l R= − =π , (60)

where brackets mean averaging over realizations. Introducing the noise spectral density �(�) by
the relations

R e i d ei R d( ) ( ) , ( ) ( )θ νθ ν ν ν
π

νθ θ θ= − =
−∞

∞

−∞

∞

∫ ∫Π Π
1

2
(61)

we get from eq.(59)
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Π (62)

Making use of the formula for periodic �-function

lim
sin ( )

sin ( )
( )

N kN

xN

x
x k

→∞ =−∞

∞
= +∑1 2

2

π
π

δ (63)

we obtain for the average rate of the emittance growth
1

8 40

1 2 2

2 0
0

1

ε
ε λ

ξλ π
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s

D i g
k dx

x
k

( , ) ( )

( , / )
( )=

− −
+ − ⋅

+ =−∞

∞
∑∫Δ
Π (64)

Therefore only noise in narrow bands around combination frequencies contribute to the emittance
growth. When the noise is due to the ground motion only the term with k closest to the betatron
tune may be retained in the sum since the spectral density rapidly falls off with the frequency as
�

-2.5 (see Ref.[6] and references therein).
In the case of the “white” noise

R e( ) lim
/

, ( ) limθ θ τ ν
π

τ
ν ττ τ

= − =
+→ →0 0 2 2

1

1
Π (65)

all terms in the sum of  eq.(64) must be retained. Their summation with subsequent passage to the
limit lead to the result
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1

8
1 2

0

1 2 2

0ε
ε

π ξ
d

dN
s S gx

( , )

( ) ( / )= −
Δ

(66)

which can be obtained directly noticing that in this case the correlation function over n turns is
just the Kronecker symbol: R(2�n)=�n0.

When there are uncorrelated noise sources of equal intensity in both rings the growth rate
(66) should be doubled. If the noise is introduced by a common to both beams element the
correlation should be taken into account (keeping in mind that the same �0 means for the two
beams different, mirror symmetric points).

An important source of noise is the feedback system itself. This noise originates mainly
from random errors in measurement of the beam position, �BPM, which is transferred into the
feedback kicker error

δ
δ

β β
p gx =

BPM

kicker BPM

(67)

Assuming the noise sources in both rings to be uncorrelated and equal in strength and
adding the feedback noise due to the BPM errors with the normalized dispersion

Δ BPM
2

BPM
2

BPM= =
1
2 0σ
δ σ ε β

x
x, , (68)

we can finally write for the emittance growth rate
1 1

4
2

0

1 2
0 2 2

ε
ε

π ξ
d

dN

s
g S gx

( , )

( ) ( / )=
−

+Δ ΔBPM
2 (69)

Let us take LHC for numerical example. There is a number of reasons which make
transverse feedback indispensable in the collision mode. The first one is the lack of the Landau
damping discussed in Section 6 which leaves undamped slow instabilities, such as the resistive
wall transverse instability. Its rise time at the top energy can be estimated from data of Ref.[7] as
�r.w.�0.2s. Another reason arises from the necessity to put the so-called PACMAN bunches (see
Ref.[8] for definition) into the common orbit with the help of a pulsed system which will
introduce noise due to pulse-to-pulse jitter.

The total beam-beam parameter for two head-on and a number of long-range collisions
can be as high as |�|=0.01. For the feedback gain factor let us take the typical value g=0.2.
Imposing then the requirement on the emittance growth to be limited by a factor of two in 8
hours (3.24�108 turns) and allowing the feedback system to make an equal contribution with the
other sources of noise we get the limitations � � 5�10-4 , �BPM � 2.5�10-3. With 	0=5�10-10m,

BPM=200m (�x =0.316 mm) these correspond to the absolute r.m.s. values of the betatron
amplitude excited by the external noise and the BPM error

�x � 0.16 �m,     �BPM � 0.8 �m. (70)
For the sake of completeness let us assess the contribution from the discrete modes into

the beam emittance. Amplitude of the -mode can be easily found with the help of eqs.(37) and
(46) with �= -g/4�, that of the �-mode is given by the residue of the superposition of coefficients
(53) in the pole p0 (see Fig.7). For the figures from the above example

   
Δε

Δ Δx s

g
g

( , )

( )
1 2

0

0 2 2 61

4
10

ε

⎛

⎝
⎜

⎞

⎠
⎟ ≈

+
+ ≤ −

d.m.

BPM
2

which is completely negligible.

8 Feedback with a stepwise transfer function
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A rather stringent limitation (70) on the BPM resolution in the case of linear feedback
revived interest to the idea proposed in Ref.[9] to damp the beam oscillations with kicks of a
fixed amplitude which are applied when the beam center-of-mass displacement exceeds a certain
threshold, xth . This would allow to hold the coherent amplitude within the specified limit without
introducing the incessant noise.

Let us examine emittance growth with such a feedback in the collision mode considering
the two different mechanisms of the coherent oscillations growth: i) some slow instability when
the elementary external kicks are correlated over a period of time much longer than the
decoherence time and ii) the white noise when the kicks are completely uncorrelated.

As was emphasized in Section 6 in the case of a slow instability there is no appreciable
build-up of energy in the continuum modes hence no irreversible emittance growth, the latter
being caused mainly by the stabilizing kicks. We will consider this case with simplifying
assumptions that:

a) a single bunch motion is unstable with the instability rise time �0�0.2s (ignoring the fact
that the resistive wall instability is really a multibunch effect);

b) only the �-modes are excited (which requires the kickers in both rings to be fired
simultaneously);

c) the feedback threshold is much larger than the BPM resolution error, xth��BPM .
The damping scenario is illustrated by Fig.9. When

the barycenter amplitude reaches the threshold, xth , the
kickers are actuated putting it down to zero with a small
error due to assumption (c). What is important is the mode
contents of the beam motion before and after the kick. Before
the kick (let us choose its moment for �=0) the barycenter
motion is determined mainly by the discrete �-mode3. Taking
into account �/2 phase advance from the BPM to the kicker
we can derive from eq.(30) the mode expansion coefficient

a i
b

c
b i

x

x
0 2

0

0
0

2
0( ) ( )

( )
, ( )− −

−− = −
−

− = −
2

th

π σ
(71)

where �x=(�0�BPM)1/2 is the r.m.s. beam size at the BPM location, the barycenter amplitude b-(�)
being defined by eq.(45). The normalized kick amplitude necessary to put the beams into their
equilibrium orbits is just Δ Δ Δ1 2 10= − = −−ib ( ), . The corresponding jump of the �-modes
expansion coefficients can be calculated with the help of eq.(37)

δ
π

λ λλa c c c an n n
( ) ( )( ) ( ) ( )− −=

−
= − −

Δ Δ1 2
2 0 04 2

0 (72)

Accordingly, for the barycenter motion after the kick we have

b b s e
i

e i s d− −= − − − − −∫( ) ( ) [( ) ( ) ]θ ξλ θ ξλθ λ λ0 1 0
0

0

1

, (73)

so that when the continuum decoheres we are left with (1-s0)�35% of the threshold amplitude.
Due to the instability the threshold will be reached again in the period of time equal (with account
of the growth rate reduction (49)) to

τ τ=
−0

0 0

1 1

1s s
ln . (74)

                                                       
3 In the general case the 	-mode will also contribute.

�

xth

(1-s0) xth

Figure 9. Damping scenario in the slow
instability case.
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Due to the BPM error there will be some jitter around this value which should destroy phase
correlation between consecutive jumps of the mode coefficients (72). Adding them up
quadratically we will obtain from eq.(40) the average emittance growth rate

1 1

0

1 2
0

2ε
ε

τσ
d

dt

s xx

x

( , ) ( )
≈

− th
2

2
. (75)

Having required again no more than doubling emittance in 8 hours we obtain from eqs.(74), (75)
with �0�0.2s the following limitation on the threshold amplitude

x th x m≤ ⋅ =−8 10 2 53σ μ. (76)
One might conclude from the present consideration that the period � could be

substantially increased and the emittance growth rate lowered by raising the kick amplitude by a
factor of 1/s0 , so that the discrete �-mode expansion coefficient were cancelled rather than the
beam displacement.  However, the �-mode which is present in the real situation would be
overdamped then. So we must accept limitation (76) which, together with the assumption (c) of
this section, implies that requirement (70) to the BPM resolution can not be significantly
alleviated.

Let us consider now the white noise case assuming each beam to receive a kick every turn
with normalized r.m.s. magnitude �. Since the kicks are not correlated, the squared absolute
values of the mode coefficients grow on average linearly with the number of turns N. From
eqs.(37) follow relation between the �- and �-mode coefficients growth rate

d

dN
a N c
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a N a N a Nn nλ λ

π
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2 2
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2
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40
16

Δ
(77)

where a0 0( ) ( )+  is the �-mode coefficient value left after the preceding damping kick.
With the first of eqs.(77) we can find the rate of the continuous emittance growth due to

noise. It is complemented by the emittance growth due to damping kicks. Let us find their
repetition rate. These kicks occur when the discrete �- and �-modes contribute to the barycenter
displacement with either the same or the opposite phases rendering one the beams displacement
maximum equal to xth . Neglecting the continuum contribution we have from eq.(30) just before
the kicker actuation

a N c a N
x

x
0 0 0 22 2
( ) ( )( ) ( ) ( )+ −+ =λ

π σ
th (78)

The jump in the mode coefficients due to a damping kick is given by eqs.(37) with  �1 = - xth/�x,
�2 = 0 (or vice versa if the second kicker was actuated). Noticing now that at all times the

approximate equality a c a0 0 0
( ) ( )( )− +≈ λ  holds we obtain for the maximum and minimum

amplitudes
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and for the number of turns between consecutive damping kicks
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Since the damping kicks have random phases for the continuum modes they add up
quadratically to the emittance growth almost doubling its rate
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As the consequence in the present case limitation on the noise amplitude is more stringent than
with a linear feedback, in the LHC example � � 1.4�10-4.
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9 Summary
The major results obtained in the present paper can be summarized as follows.

� A natural criterion of transition from the weak-strong to the strong-strong case is established
which consists in emergence of the discrete spectral line of dipole oscillations; for round beams
of equal sizes at the interaction point it takes place at the intensity ratio of about 60%.

� Large beam-beam tunespread fails to provide the Landau damping of the coherent dipole
oscillations in the strong-strong case, moreover, the beam-beam interaction can switch off
stabilizing effect of other tunespreads.

� In a perturbation caused by an external kick the discrete modes get about 82% of the delivered
energy and only the remaining 18% is imparted into the continuum modes leading to the
irreversible emittance growth due to decoherence of these modes.

� The discrete �- and �-modes, being unaffected by the decoherence process, can be damped by
a linear feedback system with a small gain factor and practically do not contribute to the
emittance growth. However, the feedback system is less efficient in damping the continuum
modes which makes the emittance growth rate almost as high as in the weak-strong case under
the same conditions.

� Feedback with a stepwise transfer function does not alleviate limitation on the BPM resolution
in comparison with the linear case. Moreover, it allows smaller external noise intensity not
only being unable to damp the continuum modes but even increasing their growth by the
stabilizing kicks.
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Appendix. Representation of the Green function
Making use of eq.(7) for the perturbed Hamiltonian and performing averaging in the

Liouville eq.(8) one can obtain the integral operator (10) kernel in the form
G I I I I r e B I I I Ix y x y

I I I I
x y x y

x y x y( , , , ) ( ) ( , , , )( )/′ ′ = + ⋅ ′ ′− + + ′ + ′1 2 , (A.1)

        [ ]B I I r I I

d d d d

x x x x y y y y

x x x x y y

= − − ′ ′ + − ′ ′ ×

× ′ ′ ′

∫1

2
2 2 2 24

2 2 2

( )
ln ( sin sin ) ( sin sin )

sin sin
π

ψ ψ ψ ψ

ψ ψ ψ ψ ψ ψ
 (A.2)

where integration over period 2� by all angle variables is implied. By performing integration by
parts the kernel can be brought into the form presented in Ref.[4].

Without loss of generality we may assume that Ix� Ix�  and introduce notations
a I I a r I I a r I I b a ax x x y y x y y x y y y y= ′ = ′ ′ = ′ ′ = − ′ ′, , , sin sinψ ψ (A.3)

Integrating by parts in eq.(A.2) by �x we can present B in the form

B
a

a ib
d d d dx x x

x x x
x x y y=

′
′ − − ′ ′∫

8 4

2

π
ψ ψ

ψ ψ
ψ ψ ψ ψRe

cos sin

sin sin
(A.4)

One integration in eq.(A.4) (that by �x� being the most convenient)  can be performed analytically
by transition to the contour integral in the domain of complex variable z=|z|exp(i�x�) leading to
the result

B a a ib d d dx x x x x y y= + − + ′
⎡
⎣⎢

⎤
⎦⎥∫1

1

4
13

2

π
ψ ψ ψ ψ ψIm ( sin ) sin , (A.5)

where the sign of the radical should be chosen so that its real part be of the same sign with b. The
triple integral in eq.(A.5) can be evaluated either by numerical integration or via the asymptotic
expansion:
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where ay<=min[ay, ay�], ay>=max[ay, ay�]  and

U a R a d R x
d

dx
xn n n

n

n( ) ( sin ) , ( )= = +∫ ψ ψ
π

0

2
21 , (A.7)

A few first of the functions Un(a) found with the help of Mathematica are
U1(a)= ArcTan[a];
U3(a)=-a*(3 + a^2)/(1 + a^2)^2;
U5(a)= a*(45 + 5*a^2 + 11*a^4 + 3*a^6)/(1 + a^2)^4;
U7(a)=-3*a*(525 - 525*a^2 + 378*a^4 + 222*a^6 + 89*a^8 + 15*a^10)/(1 + a^2)^6;
U9(a)=-9*a*(-11025 + 33075*a^2 - 32193*a^4 - 10629*a^6 - 9659*a^8 - 4863*a^10 -
            1395*a^12 - 175*a^14)/(1 + a^2)^8;
U11(a)=-45*a*(218295 - 1285515*a^2 + 2192652*a^4 - 136620*a^6 + 571010*a^8 +
  459350*a^10 + 263100*a^12 + 98884*a^14 + 22015*a^16 + 2205*a^18)/(1 + a^2)^10;
U13(a)=-675*a*(-2081079 + 20117097*a^2 - 56189133*a^4 +
   30791475*a^6 - 18419830*a^8 - 13164918*a^10 - 11456106*a^12 - 7172650*a^14 -
   3192195*a^16 - 958755*a^18 - 174489*a^20 - 14553*a^22)/(1 + a^2)^12;
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