GENERAL FORMULA FOR THE RESISTIVE WALL IMPEDANCE DERIVED FROM L. VOS’ FORMALISM

E. Metral
THEORY (1/3)

General formula for 2 layers

\[Z_{ul}^T = \frac{Z_0}{2\pi b^2} \times \frac{1}{1 + \frac{Z_2}{Z_1} \text{Tanh}(\gamma_1 s_1)} - j + \frac{\omega b \mu_0}{2 Z_2} \times \frac{\frac{Z_1}{Z_2}}{1 + \frac{Z_1}{Z_2} \text{Tanh}(\gamma_1 s_1)} \]

\[\gamma_1 = \sqrt{\left(\frac{\omega}{\beta c}\right)^2 + j \omega \mu_1 \left(\sigma_1 + j \omega \varepsilon_1\right)} \]

\[Z_i = \sqrt{\frac{j \omega \mu_i}{j \omega \varepsilon_i + \sigma_i}} \]

\[s_1 = \text{Thickness of layer 1} \]

\[b = \text{Beam pipe radius} \]

\[Z_0 = 120 \, \pi \]

\[\mu_0 = 4 \, \pi \times 10^{-7} \]
Consider the case where the layer 2 is vacuum

\[|\gamma_1 s_1| >> 1 \]

\[z_T^{ul} = (1 + j) \frac{Z_0}{2\pi b^2} \times \frac{1}{-j + 1 + b \sqrt{\frac{\mu_0 \sigma_1 \omega}{2}}} \]

\[\Rightarrow \text{The thick-wall formula with inductive bypass is recovered} \]
\[|\gamma_1 s_1| \ll 1 \]

\[Z_T^{ul} = \frac{Z_0}{2\pi b^2} \times \frac{1}{-j + \frac{b \mu_0 s_1 \sigma_1 \omega}{2}} \]

\(\Rightarrow \) The thin-wall formula with inductive bypass is recovered
NUMERICAL APPLICATION

- The layer 2 is vacuum
- The impedance parameters are
 \[b = 2 \text{ mm} \]
 \[\rho_1 = 14 \, \mu\Omega\text{m} \]
 \[s_1 = 2.5 \text{ cm} \]
 \[\mu_1 = \mu_0 \]
 \[\varepsilon_1 = \varepsilon_0 = \frac{1}{Z_0 c} \]
Full = General formula
Dashed = Thin-wall formula
Dotted = Thick-wall formula

Remark: The plots are normalized by

\[\frac{Z_0}{2 \pi b^2} \]
\[\text{skin depth } = s_1 = \approx 35651 \text{ rad/s} \]
THEORETICAL PREDICTIONS COMPARED TO MEASUREMENTS
(Caspers et al. in CERN-AB-2003-051 (RF)) (1/2)

◆ Stainless steel pipe

\[b = 50 \text{ mm} \]
\[s_1 = 1.5 \text{ mm} \]
\[\sigma_1 = 1.3 \times 10^6 \text{ } \Omega^{-1}\text{m}^{-1} \]

◆ We will compare the transverse impedances (not normalized) per unit length in a LogLog plot
THEORETICAL PREDICTIONS COMPARED TO MEASUREMENTS
(Caspers et al. in CERN-AB-2003-051 (RF)) (2/2)

Real Part

Measurements

Imaginary Part

Green dots from Burov-Lebedev

General formula

\[s = \frac{\pi f \mu_0}{1000} \approx 86600 \text{ Hz} \]
CONCLUSION (1/2)

- A general formula has been found by L. Vos for any multi-layer vacuum chamber
- For the case of 2 layers, with the vacuum for the second layer:
 - The general formula reduces to the “thin-wall formula with inductive bypass” for low frequencies. This formula can be derived from L. Vos’ formalism and is the same as the one derived by B. Zotter. It is the same as the one used by Caspers et al., which is a corrected version of the one derived by Nassibian and Sacherer. Burov and Lebedev say that they also obtain the same formula in this approximation.
 - The general formula reduces to the “thick-wall formula with inductive bypass” (which can be derived from L. Vos’ formalism) for high frequencies.
 - The general formula has a smooth transition between the “thin-wall formula with inductive bypass” and the “thick-wall formula with inductive bypass” for intermediate frequencies.
CONCLUSION (2/2)

- Low and high frequencies correspond to frequencies much smaller than or bigger than the frequency where the skin depth is equal to the thickness of the layer 1

- Intermediate frequencies stand for frequencies close to the frequency where the skin depth is equal to the thickness of the layer 1

- As concerns the comparison between the theoretical predictions of the new general formula and the measurements by Caspers et al. (in CERN-AB-2003-051 (RF))
 - The agreement is very good over the whole range of frequencies
 - The new general formula seems to be very close the one from Burov-Lebedev