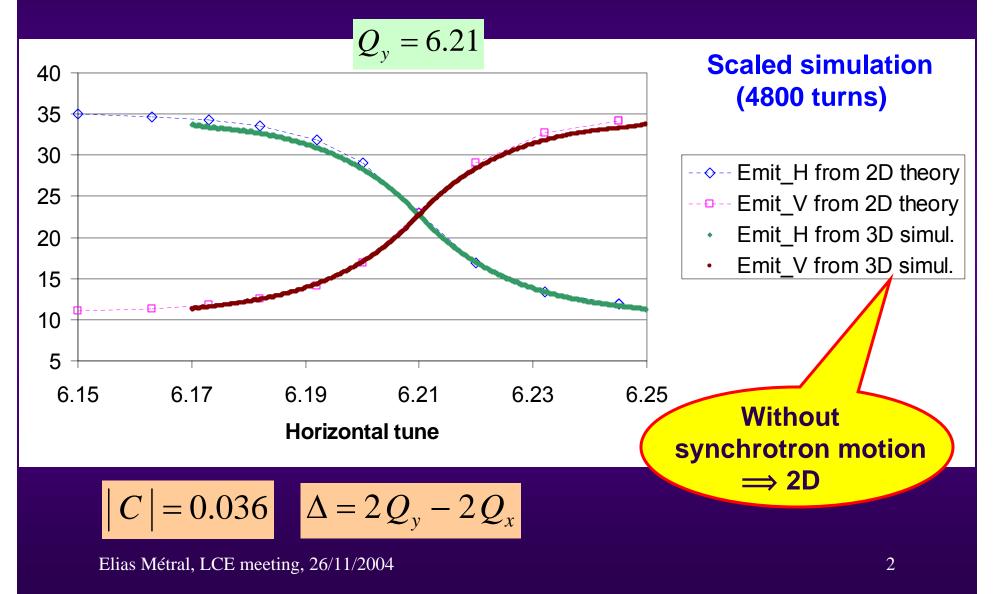
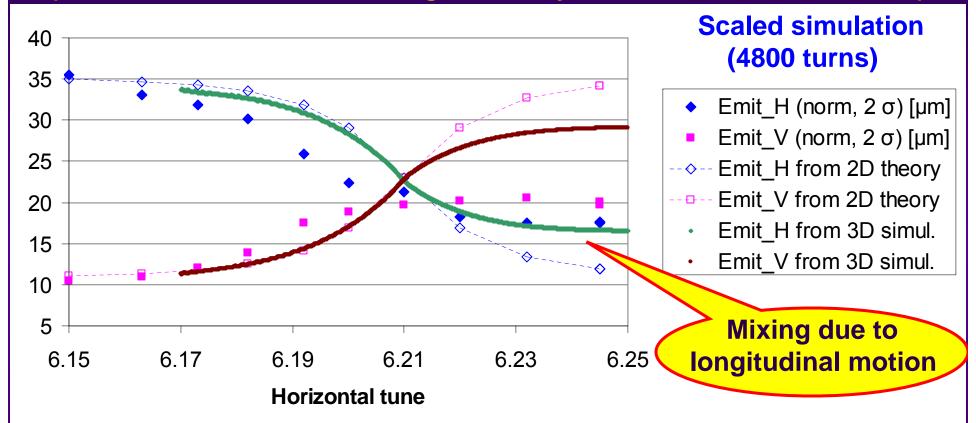
INTENSITY-DEPENDENT EMITTANCE TRANSFER : COMPARISON BETWEEN THE 2D SIMPLE MODEL AND 2D SIMULATIONS WITH THE 3D CODE IMPACT IN THE DYNAMIC CASE

Slow synchrotron motion compared to the crossing time


Elias Métral

 ⇒ Follow-up of the LCE meeting of 17-09-04
⇒ Presented at the last ICFA-HB 2004 workshop (not very well received...)

2D THEORY vs. SIMULATIONS


DYNAMIC CASE in 2003

(the horizontal tune was changed linearly from 6.15 to 6.25 in 100 ms)

MEASUREMENTS vs. 2D THEORY AND 3D SIMULATIONS DYNAMIC CASE in 2003

(the horizontal tune was changed linearly from 6.15 to 6.25 in 100 ms)

⇒ IBS is suspected (by I. Hofmann) to play a role (additional mixing) after the resonance crossing and will be investigated in detail

Elias Métral, LCE meeting, 26/11/2004

COMMENTS

- I proposed to make several comparisons between the simulations and the simple model at the workshop, but this was not accepted... (we are doing few tests however with G. Franchetti...)
- The good approximation of the simulation was even not shown in the summary session...
- ◆ I think it deserves more: This highly nonlinear mechanism... seems to be described by only 2 parameters (the coupling strength and the tune distance from the resonance) ⇒ This is interesting to check !
- This is why I would like to congratulate M.Furman and F.Zimmermann (last HHH workshop), who, I think, are in the same kind of situation (as I. Hofmann and R. Ryne) for the e⁻ cloud build-up mechanism ...

Overview of Electron-Cloud Simulation Codes

Session 6B

Miguel A. Furman LBNL

First CARE-HHH APD Workshop on Beam Dynamics in Future Hadron Colliders and Rapidly Cycling High-Intensity Synchrotrons CERN, 8-11 November 2004

HHH 2004

Lawrence Berkeley National Laboratory M. Furman, HHH2004 Session 6B: "Overview of EC Simulation Codes" p. 5

Possible future developments

- More "benchmarking" ullet
 - debugging (code should calculate what is supposed to calculate)
 - validation (results should agree with established analytic result for specific cases)
 - comparisons (two codes should agree if the model is the same)
 - verification (code should agree with measurements)
 - ECLOUD simulations vs. SPS measurements
 - POSINST simulations vs. APS and PSR measurements
 - Others...
- Move in 2 opposite directions:
 - More complete, detailed, quantitative predictions
 - Ultimately requires fully self-consistent 3D calculations
 - Simplified descriptions, few parameters, qualitative results with broad applicability
 - Identify a few basic relevant variables and input parameters (MEC code very promising in this regard)

