TCLIA/TCTV transverse impedance simulation

A. Grudiev 10.02.2006 RLC meeting

TCLIA/TCTV geometry

GdfidL simulation of transverse impedance

Dipole trapped mode electric field

Dipole trapped mode impedance and tune shift

n	f [MHz]	Q	R _t [MΩ/m]
1	317	3080	16.6
2	362	1700	152.8
3	443	1080	173.8
4	551	920	81.4

LHC top energy pars: E = 7000 GeV σ_z = 80 mm N = 10¹¹ f_0 = 11.2455 kHz Q_v = 59.31

Jaw taper shape optimization

15°- linear taper				
n	f [MHz]	Q	R _t [MΩ/m]	
2	362	1700	152.8	
3	443	1080	173.8	

10°- linear taper					
n	f [MHz]	Q	R _t [MΩ/m]		
2	362	1720	132.9		
3	443	1100	186.0		

10°- non-linear taper					
n	f [MHz]	Q	R _t [MΩ/m]		
2	360	1750	98.9		
3	437	1120	139.8		

It is not a solution for dipole trapped modes

Dipole trapped mode damping with 4S60 ferrite

Conclusions and recomentations

- Transverse impedance of the present design (both Broad Band and trapped modes) is too high
- Reduction of jaw taper angle from 15 to 10(7) degree and/or making non-linear taper is not a solution for the trapped modes. But, probably, it can reduce the BB impedance
- A possible solution for reduction of impedance of the dipole trapped modes by means of damping could be opening the longitudinal slots.
- The drawback will be excitation of low frequency trapped modes both monopole and dipole which on the other hand can be damped efficiently. (to be demonstrated)