FOLLOW-UP OF THE GSI WORKSHOP HELD ON 30-31/03/06

Elias Métral

- Burkhardt Doliwa (TU Darmstadt)
 - ⇒ Simulation for the SPS MKE kicker
- Rainer Hasse (GSI)
 - ⇒ Numerical estimate for a LHC collimator

PRELIMINARY RESULTS ⇒ They are still checking them

BURKHARDT DOLIWA (1/2)

Length simulated = 1/3 of the original

RAINER HASSE (1/6)

RAINER HASSE (2/6)

RAINER HASSE (3/6)

RAINER HASSE (4/6)

⇒ To be compared with

RAINER HASSE (5/6)

RAINER HASSE (6/6)

APPENDIX: COLLABORATION WITH RAINER HASSE

COLLABORATION BETWEEN CERN (Elias Métral and B. Zotter) AND GSI (Ahmed Al-Khateeb and Rainer Hasse) Monday, April 10, 2006

As discussed during the workshop in GSI (March 30-31), we proposed to cross-check our formulae and decided to start with the following two items.

1) A LHC collimator

- Circular chamber.
- Longitudinal length = 1 m.
- Make the plots of the real and imaginary parts of the transverse impedance from 0 to 10^{13} Hz. Consider an AC conductivity for the graphite

 $\sigma_{\rm AC} = \sigma_{\rm DC} / \left(1 + j \, 2 \, \pi \, f \, \tau\right)$ where $\sigma_{\rm DC}$ is the DC conductivity (the measured DC isotropic resistivity value is $10 \, \mu\Omega {\rm m}$) and $\tau \approx 0.8 \, {\rm ps}$ is the relaxation time.

- Make the plot for LHC (with relativistic factors $\beta = 1$ and $\gamma = 7462.69$) and for the PSBooster (with relativistic factors $\beta = 0.3$ and $\gamma = 1.05$).

1.1) Without copper coating

- 1 layer of graphite only extended up to infinity.
- Half gap = 2 mm.
- What is the numerical value of the real and imaginary parts of the transverse impedance at $8\ \mathrm{kHz}?$

1.2) With copper coating

- Add inside a coating of 5 μm of copper (resistivity = 17 $n\Omega m$).
- What is the numerical value of the real and imaginary parts of the transverse impedance at $8\ \mathrm{kHz}$?

2) A SPS MKE Kicker

- Circular chamber.
- Longitudinal length = 1.66 m.
- Layer 1 = 4A4 ferrite (8C11 in reality but more complex. See later...).
 - Gap (inner radius) = 16 mm.
 - Thickness = 60 mm.
 - resistivity = ρ = 10⁶ Ω m.
 - Permeability:

$$\mu(f) = \frac{\mu_i}{1 + j 2\pi f \tau_u} + 1, \qquad \mu_i = 460, \qquad \frac{1}{2\pi \tau_u} = 20 \,\text{MHz}.$$

- Permittivity:

$$\varepsilon' = 12 - \frac{j}{2\pi f \rho \varepsilon_0}$$
, with $\varepsilon_0 = 8.84 * 10^{-12}$.

- Layer 2 = vacuum.
- Make the plots of the real and imaginary parts of the transverse impedance from 0 to 4 $\,\mathrm{GHz}.$
- What are the numerical values of the real and imaginary parts of the transverse impedance at 1, 2, 3, and 4 GHz?