TRANSVERSE RESISTIVE-WALL IMPEDANCE OF A RESISTIVE TUBE WITH FINITE LENGTH

Elias Métral

- Complete theory done by R.L. Gluckstern and B. Zotter
- I tried to write a Mathematica program based on their draft paper of August 9, 2006

 \Rightarrow Solve a system of 2 N + 1 linear equations with 2 N + 1 unknowns, where N = order of truncation of the matrices

GEOMETRY OF THE PROBLEM

FIRST (VERY PRELIMINARY!) RESULTS...

- Application to the case of a LHC collimator
 - Length = g = 1 m
 - Half gap = b = 2 mm
 - Resistivity = 10 μΩm
 - Wall thickness = R = 2.5 cm

INFINITE LENGTH COMPUTATION

FINITE LENGTH COMPUTATION (with N = 10)

CONCLUSION AND FUTURE WORK (with Benoit Salvant)

◆ This first estimate is not too far from the computation assuming an infinite length (same shape and same order of magnitude) ⇒ Theory and numerical application do not seem to be completely wrong...

The next steps will be to

- Check this (very preliminary) result, changing N...
- Understand the limitations at low and high frequencies
- Scan in the length g of the resistive tube

. . .