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The equations of motion of the particles in a synchrotron in which the field gradient index
n= —(r/B) 0B/or

varies along the equilibrium orbit are examined on the basis of the linear approximation. It
is shown that if n alternates rapidly between large positive and large negative values, the
stability of both radial and vertical oscillations can be greatly increased compared to conven-
tional accelerators in which n is azimuthally constant and must lie between 0 and 1. Thus
aperture requirements are reduced. For practical designs, the improvement is limited by the
effects of constructional errors; these lead to resonance excitation of oscillations and conse-
quent instability if 2v, or 2v, or v,+v, is integral, where v, and v, are the frequencies of
horizontal and vertical betatron oscillations, measured in units of the frequency of revolution.

The mechanism of phase stability is essentially the same as in a conventional synchrotron,
but the radial amplitude of synchrotron oscillations is reduced substantially. Furthermore, at
a “transition energy” E; ~v,Mc? the stable and unstable equilibrium phases exchange roles,
necessitating a jump in the phase of the radiofrequency accelerating voltage. Calculations
indicate that the manner in which this jump is performed is not very critical. ~ © 1958 Academic

Press

1. INTRODUCTION

The particles in a circular magnetic accelerator, such as a synchrotron, cyclotron,
or betatron, are confined to the vicinity of their equilibrium orbit by magnetic
focusing forces. These forces are conventionally obtained by shaping the magnetic
field in such a way that

O<n<l, (L.1)

Reprinted from Volume 3, pages 1-48.

! This paper is a revised version of a report written by us in 1953 and privately circulated at that time.
Many if not most of the results obtained here have also been obtained independently by numerous other
authors, especially members of the accelerator design groups at CERN, Geneva; Saclay, France; Harwell,
England; and Cambridge, Massachusetts. No attempt has been made here to allocate credit for every
single result. Comprehensive accounts of the theory of betatron oscillations, using somewhat different
approaches from ours, may be found in references 9, 13, and 14.
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where
n= —(r/B)(0B/or) (1.2)

is the field gradient index. Increasing n strengthens the vertical focusing forces at the
expense of the radial, while decreasing n has the opposite effect; the inequalities
(1.1) impose limits on the strength of both focusing forces.

It has been shown [1, 2] that these limitations on the strength of the focusing
forces can be overcome by letting the field gradient vary azimuthally, that is, by
abandoning the axial symmetry that has characterized the fields of accelerators in
the past (straight sections in some synchrotrons, of course, also represent some
deviation from axial symmetry, but this has been more a perturbation than an
essential feature). It was shown in reference [ 2] (hereafter referred to as CLS) that
by letting n in (1.2) alternate between large positive and large negative values at
suitable azimuthal intervals, one can obtain focusing forces an order of magnitude
stronger than in an accelerator in which (1.1) is satisfied.

In the present paper we shall examine the characteristics of synchrotrons incor-
porating this “strong-focusing” or “alternating-gradient” scheme in more detail than
was given in CLS. We are concerned with oscillations of two types: “betatron”
oscillations, whose behavior is governed by the properties of the guide field and
which are independent of the accelerating field, and “synchrotron” oscillations arising
from the acceleration process. Considering these problems separately is justified [3]
as long as the frequency of betatron oscillations is large compared to that of
synchrotron oscillations, which is the case here as well as in most existing syn-
chrotrons.

2. STABILITY OF BETATRON OSCILLATIONS

The characteristics of betatron oscillations are essentially the same whether the
magnetic fields are stationary or slowly varying with time. We shall therefore
assume in this and the following sections that we are dealing with stationary
magnetic fields. The effects of adiabatic variation of parameters will be discussed in
Section 3d.

We consider a magnetic field B(r) which has the property that there is a plane
such that B at all points of the plane is perpendicular to the plane. This plane is
called the median plane and is taken to be horizontal. (In Section 4c we shall
abandon this condition of the existence of the median plane.) We further assume
that there is a closed curve in this plane such that a particle of a certain magnetic
rigidity p/e can move on this curve. We call this curve the equilibrium orbit.

In order to be usable as a guide field for accelerators, the magnetic field must be
such that the motion of a particle near the equilibrium orbit is stable in the follow-
ing sense: if a particle, whose momentum is appropriate to the given equilibrium
orbit, is started with a small intial displacement and a small initial angle from the
equilibrium orbit, it will remain near the equilibrium orbit for all time.
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We characterize the position of a point P near the equilibrium orbit by the
following set of curvilinear coordinates:

s=the distance along the equilibrium orbit measured from some fixed
reference point to that point on the orbit closest to the point P,

x =the horizontal component of the displacement of P from the equilibrium
orbit (taken to be positive in the outward direction),

z =the vertical component of the displacement.

The motion of a particle near the orbit may be expressed in terms of s as the inde-
pendent coordinate (see Appendix). If all terms of second and higher orders in x,
z, and their derivatives are neglected, the equations of motion may be written in the
form

d?x 1 —n(s)
cr_ 2.1
& ) 2
d’z n(s)
Zo_ 22
ds? pA(s) > (2.2)
where
p(s) = pc/eB.(s,0,0) (2.3)
is the radius of curvature of the equilibrium orbit at s, and
0B 0 2 OB
s = PO BAs X0 p? 0B, o

B,(s,0,0) 0x _pc/e Ox

x=0

is the field gradient at s.

Since the equilibrium orbit is closed, the quantities n(s) and p(s) are periodic
functions of s, and (2.1) and (2.2) are examples of Hill’s equation, i.e., linear
equations with periodic coefficients and without first derivative terms. We write
both equations in the form

—=—K(s)y, (2.5)

where y represents either horizontal or vertical displacement, and where K satisfies
the periodicity relation

K(s+ C)=K(s). (2.6)

Here C is the circumference of the equilibrium orbit.
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In the alternating-gradient synchrotron the magnet ideally consists of N identical
sections or “unit cells,” so that K also satisfies the stronger periodicity relation

K(s+ L)=K(s); L=C/N. (2.7)

At this point it may be useful to review some of the properties of Hill’s equation [4].

The solution of any linear second order differential equation of the form (2.5),
whether or not K is periodic, is uniquely determined by the initial values of y and
its derivative y’,

y(s) = ay(so) +by'(s0),
V'(8) = cy(so) +dt'(s,),

(2.8)

or, in matrix notation,

Y(s)
Y'(s)

IN]

Y= | = Mis o) Yoo = ¢

Aol

The usefulness of the matrix formulation (2.9) arises mainly from two features:
In the first place, this formulation clearly separates the properties of the general
solution of the problem from the features characterising any particular solution.
That is, the matrix M(s | s,) depends only on the function K(s) between s, and s, and
not on the particular solution. Secondly, the matrix for any interval made up of
sub-intervals is just the product, calculated by the usual rules of matrix multiplication,
of the matrices for the sub-intervals, that is,

M(s, | 59) = M(s, | 51) M(sy | 59), (2.10)

as is easily verified.

The determinant of the matrix M is equal to unity, because the equation (2.5)
does not contain any first derivative terms.

For the particular case of constant K the matrix takes the form

cos ¢ Kl/zsinq’)] (2.11)

M(so | §) = { —K"sin ¢ cos ¢

where ¢ = K'(s —s,). If K is negative a more convenient way of writing this is

cosh ¥ (—K)~2sinh lq (212)

M:[(—K)l/2 sinh ¥ cosh

where 1 = (—K)"*(s — s,). For an interval of length / in which K =0,

11
M=[0 J. (2.13)
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For an interval in which K is piecewise constant the matrix is the product of the
appropriate matrices of forms (2.11) to (2.13).

In the periodic systems we are considering here the matrices of particular interest
are those which characterize the motion of the particle through a whole period. We
write

M(s)=M(s+ L |s); (2.14)

this is the matrix for passage through one period, starting from s. Its elements are
periodic functions of s with period L. The matrix for passage through one revolu-
tion is then

M(s+NL | s)=[M(s)]",
and that for passage through k revolutions is [ M(s) ]

In order for the motion to be stable as defined above, it is necessary and suf-
ficient that all the elements of the matrix M™ remain bounded as k increases
indefinitely. To obtain the condition for this, we consider the eigenvalues of the
matrix M(s), that is, those numbers A for which the characteristic matrix equation

MY=.Y (2.15)

possesses nonvanishing solutions. The eigenvalues are the solutions of the deter-
minantal equation

M —AI| =0, (2.16)
or, more fully,
Z—MNa+d)+1=0, (2.17)
where we have made use of the fact that Det M = ad — bc = 1. If we write
cosu=1TrM=1%(a+d), (2.18)
the two solutions of (2.17) are
A=cosu+tisinu=e** (2.19)

The quantity u will be real if |a + d| <2, and imaginary or complex if |a +d| > 2.
Let us now assume that |a + d| # 2. Then the matrix M may be written in a form
which exhibits the eigenvalues and other properties explicitly. We define cos u by
(2.18), and define «, 5, and y by
a—d=2asin u,
b= pfsin y, (2.20)

¢c= —ysiny;
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the condition Det M =1 becomes
By—o*=1. (2.21)

We resolve the ambiguity of the sign of sinu by requiring f to be positive if
|cos u| <1 and by requiring sin u to be positive imaginary if |cos u| > 1. The defini-
tion of u is still ambiguous to the extent that any multiple of 2z may be added to
4 without changing the matrix. This ambiguity will be resolved later.

The matrix M may now be written as

cos sin sin .
M| Cosutasing - fsinp ]zlcos,u—i—Jsm,u (2.22)
—ysinu COS (1t — o sin p
where I is the unit matrix, and
= { « p } (2.23)
—y —a

is a matrix with zero trace and unit determinant, satisfying
J?=—-1 (2.24)

It should be noted that the trace of M, and therefore u, is independent of the
reference point s. For, by virtue of (2.10), we have for any s; and s,

M(s, + L | s1) = M(s,) M(s, | 51) =M(s, | 51) M(s¢), (2.25)
so that
M(ss5) =M(s; | 1) M(s;)[M(s, | s)] 7" (2.26)

Thus M(s;) and M(s,) are related by a similarity transformation, and therefore
have the same trace and the same eigenvalues. On the other hand, the matrix M(s)
as a whole does depend on the reference point s. Thus the elements «, f, y of the
matrix J are functions of s, periodic with period L.

Because of (2.25), the combination Icosyu+Jsinu has properties similar to
those of the complex exponential e* = cos u + i sin u; in particular, it is easily seen
that, for any u, and u,

(I cos puq +J sin p1)(I cos uy + T sin py) =T cos(puq +p,) + I sin(uy +p5).  (2.27)
The kth power of the matrix M is thus
M¥ = (I cos u+ J sin u)¥ =1 cos ku + J sin kpu, (2.28)
and the inverse is

M~'=T1cosu—1Jsinu. (2.29)
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It follows from (2.28) that if x is real the matrix elements of M* do not increase
indefinitely with increasing k but rather oscillate; on the other hand, if « is not real,
cos ku and sin ku increase exponentially, and therefore the matrix elements do the
same. Therefore the motion is stable if u is real, ie., if |a +d| <2, and unstable if
la+d| > 2.

In conventional circular accelerators, K(s) is constant, =n/R? for vertical and
(1 —n)/R? for horizontal oscillations, and L =2zR. Thus

1/2

sy =2n(1—n)

1/2
p,=2mn'"?,

and the stability condition reduces to the well-known inequality (1.1). If N
equal straight sections of length / are introduced, the matrix for a unit cell is (2.11)
multiplied by (2.13), and

NI
cos,u=cos¢—%sin¢ (2.31)

as is well known [5].
In alternating gradient synchrotrons [ 1, 2] the simplest magnet arrangement is
that of CLS:

p=const=R,
R (2.32)
=ny, O<s<—,
n=n, s ~
7R 27R
n= —n,, —<s<—.
N N

(The notation here is slightly different from that of CLS.)
In this case the matrix for one period is the product of (2.11) and (2.12).
Computing its trace we find, for vertical oscillations,

ﬁ sin ¢, sinh (2.33)

cos i, =cos ¢, cosh y,—
where
¢, =mnn'?/N and W, =nn'?/N,

and for horizontal oscillations,

2—n;+n,
[(ny+ 1), —1)]"2

cos i, =cos ¢, cosh iy, — sin ¢ sinh ¥, (2.34)
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FIG. 1. Region of stability for radial and vertical oscillations.
where
¢.=mn(n,+1)"*/N and Y, =mn(n,—1)"*/N.

If n, >>1 and n, >> 1, (2.34) is obtained from (2.33) by interchanging », and n,,
and the stability criteria depend only on n,/N? and n,/N>. Both modes are stable
provided n,/N? and n,/N? lie within the “necktie” shaped region of Fig. 1.

3. AMPLITUDES OF BETATRON OSCILLATIONS

The motivation for proposing the alternating gradient configuration for the
magnetic guide field in accelerators was the expectation that the effective focusing
forces would be much stronger than in the corresponding conventional accelerators,
leading to oscillations of smaller amplitudes around the equilibrium orbit, and
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consequently smaller aperture requirements. In this section we shall first give this
statement a precise meaning, and then investigate its validity quantitatively.

(a) Phase-Amplitude Form of the Solution

We may attempt to find solutions of Hill’s equation (2.5) which have the form
y1(s) = w(s) eV, (3.1)

where, for the moment, we impose no particular conditions on the functions w and
Y. It is easily verified by substitution that, if w and s satisfy

1
W'+ Kw——=0 (3.2)

3

and

then y,; as defined by (3.1) is indeed a solution, as is
yals)=w(s) eV, (3.4)

and that y, and y, are linearly independent. Therefore any solution of (2.5) is a
linear combination of y,; and y,. We can therefore write the matrix M(s, | s;) in
terms of the solutions y, and y, or, what amounts to the same thing, in terms of
the functions w and . We obtain

M(s, | 51)

W, . .
—=cos fy —wyw,' siny, Wy W, sin Y
Wy

_ (3.5)

L+wiw wow, wy owy w
11 22 . 1 2 1 .
——————=siny—(———=]cosy, —cosy+w,w, siny
Wy W, Wy Wy Wy

where  stands for y(s,) —y(s,), w, for w(s,), etc.

We now consider the case where s, — s, is just one period of K(s), i.e., 5, —s5; = L.
The matrix M is then identical with the matrix (2.22).2 If we now require that w(s)
be a periodic function of s, then w; =w, and w,"=w,’, and the forms (3.5) and
(2.22) are identical provided we make the identifications

Y(sy) —lsy)=p (3.6)
w?=p, (3.7)
ww' = —a, (3.8)

3 We again exclude the case were |cos u| = +1.
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from which follows automatically

1+ (ww')?> 1+a®
w2 B

(3.9)

This identification is legitimate if we can show that B'>—which is, of course,
periodic—satisfies the differential equation (3.2) and that

B=—2a (3.10)

To prove this, consider the matrix for the transformation from s+ds to
s+ L+ ds. This matrix is, by (2.26),

M(s+ds)=M(s+ds | s) M(s)[M(s+ds|s)] L (3.11)

For infinitesimal ds,

M(s +ds | s):{ _K(ls) s cﬂ. (3.12)

Substituting (3.12) and (2.22) in (3.11) we find
M(s + ds) = M(s) + [ (Ii;z)s;nﬂ“ _(I_(;isyh; gnﬂ} ds (3.13)

so that (3.10) is indeed valid, and furthermore
W L _xp gy LEE (3.14)

2 B
and

y' =2Ka. (3.15)

With the aid of (3.10) and (3.14) it is easily verified that 82 does indeed satisfy
(3.2), and is therefore a periodic solution of that equation. Now (3.7) and (3.8) are
justified, while (3.6) becomes the very important relation

L
ﬂzjo ?S (3.16)

(3.16) may be regarded as the definition of w. It is consistent with the previous
definition (2.18), but has the advantage of being unambiguous, while (2.18) only
defines 1 modulo 27.
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If we consider an accelerator of circumference C = NL with N identical unit cells,

the phase change per revolution is, of course, Nu. A useful number is
Nu 1 r’rc ds

=——=_— —; 3.17

Y 2 2w B’ ( )

this is the number of betatron oscillation wavelengths in one revolution. (In the
European literature on accelerators this number is often denoted by Q.) A useful
interpretation of v is as the frequency of betatron oscillations measured in units of
the frequency of revolution; we shall generally refer to v simply as the frequency of
oscillations.

The two particular solutions y, and y, may now be written as

vy = B(s) e, (3.18)
2
where
ds
os)=| @ (3.19)

is a function which increases by 2z every revolution and whose derivative is peri-
odic. The general solution of (2.5) is

y(s) = ap"? cos[ vgp(s) + J7, (3.20)

where ¢ and J are arbitrary constants. This is a pseudo-harmonic oscillation with
varying amplitude f'/?(s) and varying instantaneous wavelength

= 2mf(s). (3.21)

Incidentally, the relation (3.21) between the amplitude and the wavelength is
formally just the same as in the WKB solution of the problem of the harmonic
oscillator with varying wavelength; however, the relation between the wavelength
and the parameters of the differential equation is not as simple as in the WKB
problem.

In the treatment given here it has been tacitly assumed that f(s) never vanishes,
so that there are no singularities or ambiguities in the integral | ds/f. This is the
case when the motion is stable, i.e., when |cos y| < 1. For then «, f, and y are real
and finite; it then follows from (2.21) that f (and y) cannot vanish. In the unstable
case (|cos u| > 1, f imaginary) the solutions can still be written in the form (3.18),
but appropriate conventions have to be specified for integrating around the zeros
of f(s). On the boundary between stable and unstable regions (|cosu|=1) the
treatment given here breaks down altogether. We do not propose to treat the
unstable and boundary cases in detail here.
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(b) Admittance

From the form (3.20) of the solution of the equation of motion it follows that the
quantity

1
WZE [+ + By 1=yy*+2apy + py'? (3.22)

is constant, independent of s. Therefore the largest displacement is attained where
S has its maximum value.

In a given accelerator, the motion is restricted by the walls of the vacuum
chamber, or other obstructions, to a certain region around the equilibrium orbit, let
us say to | y| <a. Then all particles whose initial conditions are such that

2

a
W< WO =
ﬂmax

will perform oscillations that remain within the vacuum chamber. Following
Sigurgeirsson [ 6], we define the admittance of the system as the area of that region
of (y, »") phase space for which any particles injected with initial values within the
region will remain within the vacuum chamber. This area is evidently the area of
the ellipse (3.22), with W= W,, that is,

A = admittance = 7a%/f,,.,. (3.23)

It is therefore desirable to design an accelerator with as small a value of f5,,,, as
possible. The advantage of the alternating-gradient design is precisely that S, can
be made smaller than in a conventional accelerator of the same radius.

From (3.19) we see that, if f(s) were constant, it would be equal to

p=C/2rv=R/v, (3.24)

where R= C/2r is the mean radius of the accelerator. In the general case, the maxi-
mum value of f will exceed f by some factor, which we call the “form factor”

F:ﬂmax/ﬂAv:vﬁmax/R‘ (325)

The form factor F can generally be kept fairly small (say about 1.5), and therefore
the admittance of an alternating gradient machine is mainly governed by the
oscillation frequency v.

In conventional accelerators v=n"* for vertical and (1 —n)"/* for horizontal
oscillations; both these frequencies are less than 1. In alternating gradient
accelerators we can make v large, thus achieving a larger admittance for a given
aperture or alternatively a smaller aperture for a given admittance.

It follows from (3.20) that the maximum y at any particular s is proportional to
B2, Therefore, if the vacuum chamber semiaperture @ is constant all around the

1/2 1/2
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machine, the particles will reach the walls only where f = f,,.«; elsewhere they will
only attain a maximum amplitude

a(B/Bmax) .

This makes it permissible to insert structures within the aperture of the vacuum
chamber without reducing the space available to the beam—provided these struc-
tures are placed where f < f5,,.x and are close enough to the walls.

(c) Approximate Calculations

The general solution of Hill’s equation

d*y
W%—K(s)y:() (2.5)
is characterized by the amplitude function
w(s) = BY2(s), (3.26)

which is periodic in s with the same period C as K(s). We wish to find a method
for obtaining fS(s) and
1 Cds

=l 7 (3.19)

V=

approximately in the case where f(s) does not fluctuate very much about its mean
value.

Equations (3.12) to (3.14) can be combined to yield a single third-order differen-
tial equation for f:

B" +4KpB +2K'f=0. (3.27)

The amplitude function f(s) is that particular solution of (3.27) which is periodic
and is normalized so that

Br—ad =3B LB+ K= 1. (3:28)

[ Equation (3.28) has three linearly independent solutions; the other two are, in
general, the squares of the normal solutions of (2.5).]
We now write

K(s) = 3€g(s) (3.29)
and

B=all+¢€fi(s)+€fals)+ -1, (3.30)
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that is, we regard the focusing function K{(s) as “small” in some sense, and hope to
obtain the deviation from constancy of the amplitude function f(s) as a power
series in the smallness parameter €.

Substituting in (3.27) we obtain the recursion relation

S = =2 18— fu8s (3.31)

where we must impose the condition that f,, is periodic and has zero mean value.

It is not entirely obvious that this periodicity condition can be met. It is
necessary for this that the right hand side of (3.31) be a periodic function with zero
mean. We can prove by induction that this is the case. For n=1, we have, from
(3.31),

H'=-g. (3.32)

Since g’ is the derivative of a periodic function, it has zero mean, and therefore
(3.32) can be solved for f;. We may now write (3.32) in the form

S = =2 01 8) = (fua SO A3 V) + S Nt (3.33)
so that the mean value is
"> =+ - (3.34)
We now note that, for any r and s,

e =P fovn- (3.35)

This relation may be verified by using the recursion relation (3.31) for f,” and
integrating by parts. Applying (3.35) to (3.34) n—2 times we find

a1 S0 =</ fu1D- (3.36)
On the other hand, a straightforward triple partial integration yields
S-S0 =—N" fuzr- (3.37)

Therefore { f,'_; f1> =0, and (3.31) has a periodic solution.
We now choose the normalizing constant so that (3.28) is satisfied. Thus, from
(3.19),
1 1 C ds]?
2__ _— n___ £2 2 b
Aegal =y rer) 5]

1 C ds]?
:16”2<2egf2—3f2>“0 f] . (3.38)
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Expanding (3.38) in a power series in €, and making use of the relations satisfied
by the functions f,,, we obtain

2

C
V=15 (260 €N +ELA D+ gD+ - 1 (3.39)

Thus we have obtained the amplitude function and the frequency of oscillation
in terms of integrals derived from the focusing function g(s). The procedure given
here is particularly useful when € | f;| is small, so that the amplitude function f(s)
is nearly constant.

Up to the second order in € our result is identical with that obtained from the
“smooth approximation” given by Symon [7]. It has the advantage that it is easy
to see how to obtain higher approximations.

The first term in (3.39) is the focusing or defocusing effect of the mean restoring
force g; the second term shows that fluctuations about the mean value will always
produce an additional focusing term. In alternating-gradient accelerators the first
term is generally small or zero, and the focusing is mainly obtained from the second
term.

As an example, consider the CLS configuration (2.32), with €g =2n/R>.

In this case we obtain from the first two terms of (3.39)

n,—n, n*(n;+n,)?
== 2+& ‘N22 . (3.40)

This is precisely what is obtained by expanding the left hand side of (2.33) in a
power series in u, and the right hand side in a power series in n; and #n,, ignoring
terms of higher than second order in n, and n, or fourth order in x,, and noting
that v= Nu/2xn.

(d) Adiabatic Damping

As the particle is accelerated, its mass and velocity increase. Furthermore, the
shape of the magnetic field may change (for example, because of saturation effects)
and, therefore, its focusing properties will change. It is, therefore, desirable to
investigate what happens to the amplitude of oscillations under these circumstances.

The effect of the increase in mass and velocity is the same as in conventional
circular accelerations, namely, a damping of the amplitude proportional to p'/?,
where p is the momentum of the particle [8]. The interesting question is: What
happens when the focusing properties of the field change slowly, that is, when the
matrix M changes slowly from one unit cell to the next?

Suppose we have

Y1 =M Y, (3.41)
Yiio=My 1 Yo =(Mg+em) Yy, . (3.42)
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We want to find an invariant, i.e., a quadratic form U whose coefficient matrix V
can be calculated from the matrixes M and m, such that

Uk 1= Us, (343)

except for terms of second and higher order in €. Here V, ; must be obtained from
the elements of M, ,; by the same prescription by which V, is obtained from M,.
Let us define, for any 2 x 2 matrix M, its “conjugate”

:|: M22 _M12:|
—My My

M (3.44)

Then M +M =Tr M and MM = Det M; if M is unimodular, M equals M .
The invariant W [ Eq. (3.22)] may be written

ZW:sirll,u [X, VY], (3.45)
where V,, is the matrix
Vo=S(M —M) (3.46)
and
S= [? _01} (3.47)

We, therefore, expect the adiabatic invariant to be of the form
Ukz[Yk:VkYk]’ (3~48)
with

Vie=a,[S(M,—M,) +€S(b—5)], (3.49)

Vi 1= (ax+€) SLM; — M +€(m —m) +€(b—b)].

The invariance condition U, ; = U, leads, if terms of order € are neglected, to

(M — M) +aM(m—1) M+ M(b—b) M —(b—b)=0, (3.50)

where we have left out the subscript k.
The solution of (3.50) is

« mM+Mm A(sin )
—= — = 3.51
a 2—M?*—M? sing (3:51)
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and
~ M(Mm —mM)

b
4 sin? u

, (3.52)

where we have made use of the fact that both M and M + em are unimodular and,
therefore, mM + Mm = 0.
It follows from (3.51) that the adiabatic invariant is

V_

—— S[M—M+eb—b)]; (3.53)
sin u

this equals 21 as defined by (3.18) except for the small correction
€S(b —b)/sin u.

Thus, to lowest order in €,

U=7yy?+ 2oy + py'2 + [Y,S(b—b) Y] (3.54)

€
2sin u
is an adiabatic invariant as the focusing fields change slowly, and the amplitude
Y,.x varies approximately as f,...”. Combining this result with the amplitude
variation proportional to p ~'? arising from acceleration, we have the result: As the
energy and the focusing field change, the amplitude of oscillation varies as

(Bamax/P)'2.

4. EFFECTS OF MAGNET IMPERFECTIONS

In an actual magnet the fields will differ somewhat from the ideal design. There-
fore a particle which originally starts out on the ideal equilibrium orbit will, in
general, not stay exactly on that orbit but will deviate from it. The magnet is still
usable for an accelerator provided the following requirements are met at all times
during the acceleration cycle:

(1) There exists a closed orbit, the “displaced equilibrium orbit,” which the
particle can follow, and which is located well within the aperture of the machine.
(2) Oscillations about this displaced equilibrium orbit are stable.

(a) Displacement of Equilibrium Orbits

Let y be the displacement—horizontal or vertical—from the ideal equilibrium
orbit. Then the equation of motion of the particle is of the form

dz
EerK(s)y:F(s), (4.1)
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where we have neglected nonlinear terms, and where F(s) is a measure of the deviation
of the field on the ideal orbit from its ideal value:

F(s) =%. (4.2)

Here Bp is the magnetic rigidity of the particle, and 4B = B, for vertical oscillations
and 4B = B, — B, for radial oscillations, both measured on the ideal orbit.

The inhomogeneous equation (4.1) may be solved in terms of the solutions of the
homogeneous equation (2.5), which are

B2 cos < j ‘;,S+ 5) = B2 cos(ve + 9). (4.3)

We assume that the homogeneous solution is known, ie., that we know the
function f(s).
We now introduce the new variables

n=p"", (4.4)
ds
o= F (4.5)

Using the relations (3.12) to (3.14), the differential equation transforms to

d*n 2 2p3/2
W—l—v n =V L7 F(s). (4.6)

The forcing term on the right hand side can be regarded as a function of the new
independent variable ¢, periodic with period 2z in ¢ corresponding to the period
C in 5. We have thus reduced the problem of the forced oscillations of Hill’s
equation to the forced oscillations of a harmonic oscillator.

The periodic solution of (4.6) is

V Jv¢+27t

n(¢) JW)cosv(n+d—y) dy, (4.7)

C 2sinzav iy
where f(/) = f*?F(s). Thus the displacement of the closed orbit becomes infinite (in
the linear approximation) when v is integral, i.e., when the perturbing force (which
is necessarily periodic with the period of the circumference) is in resonance with the
free betatron oscillations. Since small field deviations are unavoidable, the magnet
must be designed so that v is not integral for either mode.

Corresponding to the invariant W of Section 3 we have the quantity

V($)=n>+ (n/v)> =yy>+ 20y + By (4.8)
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From (4.7) we see that

V2 J~¢+27z f¢+2n

) =roa— W) f(x) cos (Y — ) dip dy. (4.9)
4 sin” v Jy P

Another useful formulation of the problem is in terms of Fourier components.
Let

f($)=PF(s)=}. fie™, (4.10)
k

with

_1
C2n

fi f: "o dp = LC BF(s) e~ ds. (411

T'hen the periodic solution of (46) is
szr i
n=> vzik el (4.12)

This formulation clearly exhibits the resonance properties of the solution. We see
that the orbit is most sensitive to those Fourier components of the perturbation
whose order is close to the free oscillation frequency v, and that the Fourier
components must be taken with respect to the phase variable ¢ rather than the
geometrical variable s.

In practice we usually do not know the perturbing function F(s) in detail, but
know some of its statistical characteristics. In that case we can make statistical
assertions about the equilibrium orbit. Consider, for example, a machine made of
M magnets, with a field error 4B, at the position of the ideal equilibrium orbit in
the rth magnet (assumed constant throughout that magnet). Let us define

F, 1 4B,

Ay’_K, =B K.’ (4.13)
where we als assume that K(s)=K, is constant in the magnet; furthermore we
assume that all magnets have the same absolute value of K. The significance of 4y,
is that it is that displacement from the ideal position of the magnet which will just
cause a field error 4B,, regardless of whether the error is actually caused by a
magnet displacement or by an error in the intrinsic characteristics of the magnet.
Assume further that the errors in different magnets are uncorrelated, and that the
mean square error is

{AY*Y ay =02 (4.14)
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We now consider the expectation value of the amplitude of the displaced
equilibrium orbit in an ensemble of machines having errors as described. The
quantity V defined by (4.9) is a convenient measure of the square of the amplitude.
Its expectation value is

V2 ¢+2n rPp+2n
K m=gaa— | | SW) ) cos vy —z) dp dy.  (415)

4 sin? v 3 ¢

Since, by hypothesis, errors in different magnets are uncorrelated, < f() f(x)> =0
unless Y and y lie within the same magnet. Let us assume that the length of the
individual magnets is small compared to the wave length of betatron oscillations,
i.e., small compared to f. Then the factor cos v(}) —y) can be replaced by unity
when y and y are in the same magnet, f can be replaced by its value at the center
of the magnet, namely *?KAy, and the interval of ¢ corresponding to the magnet
is L/vf3, where L is the lenth of the magnet. Thus the contribution of the rth magnet
to the double integral in (4.15) is

K*L*f,(4,) (416

The fluctuations in Ay from magnet to magnet are assumed uncorrelated; hence we
may averages 8, and Ay,” separately in averaging (4.16). The mean value of f, is
very nearly R/v [see Eq.(3.24)]. The length of a magnet is 2zp/M, where p is the
radius of curvature in the magnets (p is less than R if there are field-free sections
between the magnets). Furthermore, K = +n/p% Therefore

2 2
n n“R

sin® v Mvp?

VD av= (4.17)

The amplitude of oscillations is given by Y = (V)2 Again replacing 8 by R/v, we
find for the mean square amplitude

2 R2 2
” "5 (4.18)

Y2y a0y = e .
Y sin v p? v2M

For the design of an accelerator it is desirable to have an estimate, not just of the
mean square amplitude, but of the largest amplitude that can reasonably be expec-
ted. It has been shown by Liiders [9] that the higher moments of the distribution
of Y? satisfy

(Y ay =KL (Y] (4.19)

for k << M. 1t follows that Y2 has an exponential distribution (corresponding to a
Rayleigh distribution in the amplitude Y). Thus the probability that Y? exceeds
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four times the mean value (4.18) is about ¢ ~*=0.02. It is thus safe to assume that,
with 98 % probability, the displacement of the closed orbit will be less than

p=2 T R b (4.20)
|sin v| p vM 2

times the root mean square equivalent displacement of the individual magnet,
where F is the form factor defined by (3.25).

For the 30-Bev machine now under construction at Brookhaven, we have
R=4211ft, p=280ft, |n| =360, M =240, =8.75, F'2=1.25, so that the multiplica-
tion factor P equals 36. Thus if the errors in placement of the individual magnets
are random and uncorrelated with rms displacement of, say, 0.02 inch, the resulting
equilibrium orbit is unlikely to deviate by more than 0.72 inch.

If we consider machines with different values of n and M but similar configura-
tions of the unit period, we note that the phase shift u per period depends only on
n/N? and that v=Nu/2n [Eq.(3.17)]. Let us assume that the parameters are
varied so as to keep n/N? constant, and also so as to keep M/N (the number of
magnets per unit cell) and p/R (the fraction of the circumference occupied by
magnets) constant. Also adjust n in each case so that sin zv has the same value.
Then n varies as N2, v varies as N, M varies as N, and F is constant; thus the factor
P increases proportional to N2 or n'/4 This is in contrast with the amplitude fac-
tor for free oscillations which, as we saw in Section 3, decreases with increasing n.

This leads to a fundamental limitation on the strength of focusing that is prac-
ticable. The parameters of a machine have to be chosen so as to strike a com-
promise between the decreased aperture requirements for free betatron oscillations
and the increased orbit deviations arising from errors in magnet placement. The
very large values of n and v proposed in our original paper [2] appeared feasible
only because at the time of writing that paper we were not sufficiently aware of the
importance of the effects of magnet errors.

(b) Errors in Field Gradients

The distribution of field gradients along the equilibrium orbit may also deviate
from the ideal—due to variations in length of the individual magnet sectors, in
magnet gap dimensions, in iron properties, etc. As a result the periodicity condition

K(s+ C/N)=K(s) (2.7)

is not exactly satisfied. However, the weaker periodicity relation
K(s+ C)=K(s) (2.6)
remains valid. The stability and amplitude considerations of sections 2 and 3 still

apply, but the unit cell that must be considered is the whole revolution rather than
the Nth part of it, as in the ideal machine.
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The matrix for the transformation about one revolution is still of the form (2.23).
It may be written as the product of the individual—no longer quite identical—unit
cell matrices

M= ﬁ M,, (4.21)
i=1
where
M;,;=1Icosu,+1J; siny; (4.22)
is the matrix for the ith unit cell.
The stability condition is again
ITr M| <2. (4.23)

In a perfect machine, Tr M =2 cos(Nu), where u is the phase shift for one unit cell.
If the imperfections are small, the matrix for the actual machine will differ only
slightly from that for the perfect case; therefore the perturbations can cause (4.23)
to be violated only if cos(Nu) is near +1 or —1, that is, if v= Nu/2x is near an
integral or half-integral value. Integral values of v, as we have seen, already lead to
difficulties because of large deviations of the equilibrium orbit; thus the main practical
effect of gradient errors is to introduce instability in the vicinity of half-integral
values of v.

Another effect of the gradient errors will be to alter the amplitude function f(s),
and therefore the form factor F defined by (3.25) and the admittance of the system,
even when stability is preserved.

To investigate these effects quantitatively, we write the equation of oscillation
about the actual equilibrium orbit in the form

d2
A+ [Ko(s)+k(s)] ¥ =0, (4.24)

where K(s) is the focusing function for a perfect machine [satisfying the strong
periodicity relation (2.7)], and k(s) [satisfying only the weak periodicity relation
(2.6)] is the perturbation. Suppose the solution for the perfect case (k=0) is known
and that the matrix for one complete revolution in the perfect case is

SN

“os) —als) (425)

M(s)=1cos o+ J(s) sin pg; J(s)={
Consider now a short interval of length ds; near s,. Its contribution to the matrix
M, is, in the limit K,'? ds, < 1,

m, = ! dsl} , (4.26)

| —Ko(sy)ds; 1
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while its contribution to the actual matrix is

1 dsl}

m=|: —[Ko(sy)+k(sy)]ds; 1 (4.27)

If k were different from zero only in the interval ds;, the actual matrix would
be obtained from M(s) by replacing the contribution (4.26) by (4.27), that is, by
multiplying M(s;) on the left by

1 0
1= . 4.26
mo =] i, 1) (426
Carrying out the multiplication, we find
TrM=2cosu=2cosuy— (fsinugy) k(s,) ds. (4.29)

Thus the error k in the interval ds; contributes — fi(s,) k(s,) sin g, - ds; to the trace
of the matrix. Adding the contributions from errors k(s) over the whole circum-
ference we obtain

A(cos 1) = —Sir‘%f B(s) k(s) ds, (4.30)

and the frequency shift is

_dn_ _Alcosp) 1 Jcﬁ(s)k(s)ds. (4.31)
0

Ay = _ -
! 2n 2rsinu, 4n

The expressions (4.30) and (4.31) are only first approximations, since terms of
second and higher orders in k are neglected. When sin g, is near zero the second
order approximation must be considered. If there is an error k(s,) ds, near s, and
k(s,) ds, near s,, the matrix at s, is

1 0 1 0
M0~ e 1] ke 1] (432

where A is the matrix of the unperturbed system from s; to s,, and B the matrix
from s, to s, + C. We may write

M(s;) = My(s;) — (RBA) k(s;) ds,
— (BRA) k(s,) ds, + (RBRA) k(s,) k(s,) ds, ds,, (4.33)

where

0 0
R:{l o] (4.34)
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The trace of M(s,) is
2cospu=2cosuy— (ki f; dsy+kyfyds,)sinug+ ByApki k, dsy ds,, (4.35)

where we have written k, for k(s,), etc.
From (3.5) we obtain

Alzz(ﬂlﬂz)l/z sin v(¢, — ¢,), (4.36)
By = (1 B2)"?sin v(2m — ¢y + ) = (B )" sin[ po—(d — ) 1. '
Substituting in (4.35) and integrating, we find

sin u
2

COS [t — COS [l = —

joc k(s) B(s) ds

+% JOC ds, jc ds; kiky By Bo sin v(¢, —dy) sin o — (¢, — 1) ].
(4.37)

We are now in a position to find the width of a stopband, ie., the width of that
range of v=u,/2n over which |cosu|>1. Consider the case where v is nearly
integer,
v=p+e,
with p an integer and € small. Then, to second order in €,
sin uy=2me;  cos po=1—2n%€.
We neglect terms of higher than the second order in € and k& combined. Therefore

v in the arguments of the sines in the double integral in (5.37) may be replaced by
P, Ho by 27p, and the integral over the triangular region

LC ds, Llc ds,

equals half the integral over the square region

LC ds, LC ds,.

Writing the sine functions in terms of complex exponentials we obtain, after some
manipulation,

cos u— 1= =2n%€* —meJ o+ 5 (|5, 1> — J %), (4.38)
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where, for any n,
C .
J, = j B(s) k(s) e~ ds. (4.39)
0

Solving for cos u—1=0, we find

_l’_
e _Jot 15| (4.40)
4r
so that the width of the stopband is
J 1] ¢ i
sy=ll2l _ 1 j B(s) k(s) e2P%) ds | (4.41)
2 2 0

The derivation for half-integral stopbands (v= p + 1) is exactly analogous with the
result

J
oy =%. (4.42)

We may express these integrals in terms of the phase angle ¢ as the independent
variable, with

ds=vp dp.
Thus

2n
J, = j vBke =" dp (4.43)
0

is 27y times the nth exponential Fourier component of %, and the results of this
section are

shift of frequency [ Eq. (4.31)]

Av =3v(p?k)o; (4.44)
width of stopband
ov="|(%)s|. (4.45)

Beat Factors. The amplitude function f(s) will also be modified by gradient
errors, and its maximum value, which determines the admittance of the system and
also the expected peak deviations of the closed orbit due to field errors, will in
general be larger in an imperfect machine than in a perfect one. Because the
amplitudes of both free and forced oscillations, and hence aperture requirements,
are proportional to 2, it is desirable that the actual maximum value of f exceed
the ideal maximum by as small a factor as possible.
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We define the “beat factor”
G = f(actual)/f(ideal) ] .x (4.46)

for a machine in which the actual function f(s) differs from the ideal one because
of gradient errors.

To obtain the change in f at some particular azimuth s; we again consider first
the contribution from the error k(s,) in an interval ds, at s,. This is obtained from
the matrix (4.33) with k&, =0:

M(s;) = My(s;) = BRAK(s,) ds,

BIZAII BI2A12

=M _
O(SI) B22A11 B22A12

] k(sy) ds,. (4.47)

The (12) element of M(s,), which is what determines f, is, by (4.36),
M 5(s1) =M120_312A12k(52) ds,
=f sinpg— BB, sin v(¢p, — ¢y) sin[ uo—v(gr— 1)1 k(s,) ds,. (4.48)

Integrating over s,, we obtain

AM 5(s1) = — B, f e dsy ko Bo sin v(g, —dy) sin[ uo—v(d, — ) ].

51
But
AM 1, = A(f sin u) = Af sin pg+ 1 cos pg - Ap.

Using (4.31) we solve for 4f, obtaining

ﬁiljswck(s)ﬁ(s)cost( +¢,—¢y)ds (4.49)

2sin g Y, 2/ PA\%2 T+ Q=) ds, :
vp #,+2n

:le kB2 cos 2v(n + ¢ — ) do, (4.50)

where we have changed to the phase ¢ = | ds/vf as the independent variable. From
(4.50) it is easily verified that the fractional change in f satisfies the differential
equation

dzA[)’ L2 AP [)’

a0 B 5 — 2022k (s), (4.51)
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which is very similar in form to the equation (4.6) satisfied by the displaced equi-
librium orbit, but with 2v, rather than v as the frequency of free oscillations. We
may again solve (4.51) by Fourier analysis: we have

1 = .
Phs)=5 - % Jpe™ (4.52)
p=—wx

where J), is just the integral given by (4.30). Then the periodic solution of (4.51) is

Aﬁ eP?
= 453
I Zz (4.53)

(p/2)*
which is, of course, equivalent to (4.50). The form (4.53) shows that the amplitude
function is most sensitive to those harmonic components of the error in K(s), or
rather in $%K(s), whose order is nearest to 2v, and that it becomes infinite when 2v
approaches an integer. If we consider only the leading term in (4.53), i.e., that value
of p which is closest to 2v, we have approximately

4B |J,| cos(pg +J)

5= dnv—pp) (434)

where 0 is a phase angle. Since the width of the stopband at v= p/2 is just |J,|/2%
[Eq. (4.41)], we see that the beat factor produced by the errors is related to the
width of the nearest stopband produced by them,

_ (0v),
+(Aﬁ/ﬁ)max_ 1 +2(V_p/2), (455)

where (6v), is the width of the stopband at p/2, and v — p/2 is the distance from the
stopband.

Effect of Random Errors. As an example, we again consider the form the fore-
going effects take when the errors in n(s) or K(s) are randomly distributed in
M magnets, with no correlation between the errors in different magnets. We have
the following root mean square ensemble averages for all orders p small compared

to M,

Rp R|n| /4n
=MV " = — 4.56

1 1 .
i - —ip¢
7= D ams =5 <‘3€ Kkfpe ™% ds

where we have, in the averaging process, replaced f by R/v and noted that the
integration is over M intervals of average lenth 2zp/M. For the machine now under
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construction at Brookhaven (R=421ft, p =280 ft, n =360, M =240, v=28.75) we
obtain

1
Z <Jp>rms :4O<An>rms

The stopband width is just this, while the shift in v is J,/4n. The beat factor, for
v=8.75, aries aqually from the stopbands at %/ and &, and is

A
G=1+40 <”> .
n rms

Thus if the variation in n from magnet to magnet were 1 percent (rms), we would,
on the average, expect v, and v, to differ from the design values by 0.02 unit, have
stopbands of width 0.04 unit, and have a beat factor of 1.04. Any particular
machine might, of course, be worse than this, though it would be unlikely to be
worse by more than factor of 2.

(c) Coupling between Horizontal and Vertical Oscillations

Up to this point we have assumed that horizontal and vertical deviations from
the equilibrium orbit would be treated separately. This is the case when the
magnetic field possesses a “median plane,” ie., a plane on which the field is
everywhere perpendicular to the plane. However, the field of an actual magnet will
deviate slightly from this condition; consequently the equilibrium orbit need not be
a plane curve, and the two types of oscillations may be coupled.

In this case it is convenient to make use of the Hamiltonian formulation of the
equations of motion. It is shown in the Appendix that the equations of motion, with
the arc length s along the equilibrium orbit as the independent variable, can be
derived from a Hamiltonian function

G(x, 2, px, P> 5), (4.57)

which is periodic in s. Here x and z are the components of the displacement from
the equilibrium orbit parallel and perpendicular to the oscillating plane, and p, and
p. are canonically conjugate momenta. The equations of motion are

v 960G
“we T e
(4.58)
, 0G . 0G
z =

:aa D: _Ea

where a prime, as usual, denotes differentiation by s.

To obtain linear equations of motion we expand G as a power series in x, p,., z,
p, and neglect all terms higher than the second order. Since x =z =0 is the equi-
librium orbit, there are no first-order terms. Thus G is a homogeneous quadratic
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function of x, p,, z, p,. Because of Maxwell’s equations it may be written in the
form

G=3[K x*+K,z? +2Mxz + (p.— Q2)* + (p. + Ox)*]. (4.59)

In the particular case where the equilibrium orbit still lies in a plane, these
coefficients have the following physical significance

as in the uncoupled case; M/K, is the slope of the surface on which the field has
zero radial component, and Q is proportional to the longitudinal or solenoidal
component of the magnetic field on the equilibrium orbit. If the equilibrium orbit
is not plane, these interpretations must be modified slightly, but the Hamiltonian
still has the form (4.59).

When G is a quadratic form (regardless of whether it is of the particular form
(4.59), or not), the equations of motion (4.58) are linear and therefore define a
linear canonical transformation of (x, p,, z, p,) phase space at s=s, into phase
space at s=s,. Such a transformation can, of course, be represented by a (4 x4)
matrix M,

X(s5) =M(s, | 51) X(sy), (4.60)
where X(s) stands for the vector

x(s)
Px($)
z(s)
ps)

The Hamiltonian quadratic form G can also be represented by a—symmetrical—
4 x 4 matrix: in vector notation

G=1[X, GX]. (4.61)

The equations of motion (4.58) then become, in matrix notation,

X' =SG X, (4.62)
where
0O —1 0 O
1 0 0 O
S= 0 0 0 —1 (4.63)
0O 0 1 0
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It follows that, for any two solutions X; and X,
d ! ’
7 [X2: 8K ] =X, SX, ]+ [X;, SX,'] =0, (4.64)

that is, the bilinear form

[Xs, SX1]=X1P2— XD+ Z21P2— 22D

is invariant. Therefore, this form has the same value at s =s; and at s =s,. But, by
(4.60),

[ Xa(s2), SX1(s2)1=[MXy(;), SMX(s1)]
:[XZ(SI)MSMXI(SI)]:[XZ(SI): SXi(sy)], (4.65)

where M is the matrix obtained from M by transposing rows and columns. Since
this relation is satisfied for any two solutions X; and X, the matrix M must satisfy

MSM =S. (4.66)

This relation is due to Poincaré [10], who proved it for the matrix of partial
derivatives 0x;(s,)/0x,(s;) for any canonical system, linear or not. Evidently, the
theorem holds for systems of any number k of dimensions, provided S is the
(2k x 2k) matrix obtained by writing

0 -1
1 0
along the diagonal k times, and zero elsewhere.
Matrices M satisfying (4.66) are said to be sympletic. From the symplectic
property of the transformation matrix we deduce that for each eigenvalue A of the

matrix M, its reciprocal must also be an eigenvalue. For if we take for X, and X,
the eigensolutions X; and X, of

MX = AX,
corresponding to the eigenvalues A; and 1,, we have, from (4.65)
(Aidge— D[X;(s1), SXi(s,)]=0. (4.67)

Given the eigenvector X;, (4.67) must hold for all eigenvectors X,. But the
bilinear form [ X;, SX;] cannot vanish for all eigenvectors X,, since any set of
initial values is a linear combination of the four eigenvectors. Therefore at least one
of the eigenvalues is the reciprocal of A,. Therefore, the eigenvalues may be
arranged in reciprocal pairs.
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FIG. 2. Location of eigenvalues for two-dimensional linear oscillations. (a) Both modes stable. (b)
One mode stable, one mode unstable. (¢) Both modes unstable in absence of coupling. (d) Instability
induced by coupling.

It follows that the product of the eigenvalues, and therefore the determinant of
the matrix M, is equal to unity (Liouville’s theorem). However, the symplectic
condition is—for problems involving two or more degrees of freedom—a much
stronger restriction than just the conservation of volume in phase space. Liouville’s
theorem imposes just one constraint on the (2k)* elements of M (where k is the
dimensionality of the problem), while the symplectic condition imposes k(2k —1)
constraints [ 11]. Thus Liouville’s theorem is equivalent to the symplectic condition
only for one-dimensional systems.

Since M is real, the complex conjugate of an eigenvalue is also an eigenvalue. We thus
have the following possibilities, assuming the eigenvalues to be distinct (Fig. 2):

4 Other proofs of this fact have been given by Liiders [ 12], Sturrock [13], and Seiden [ 14].
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(a) All four eigenvalues lie on the unit circle, forming two complex conjugate
and reciprocal pairs.

(b) One reciprocal pair is real, the others are complex and on the unit circle.
(c) Two real reciprocal pairs.

(d) One eigenvalue, say A,, complex and not on the unit circle; the other
eigenvalues must then be 1,=1/1, 1;=4,% A,=1/4,*.

The motion is unstable if any eigenvalue is greater than 1 in absolute value. Thus
only situation (a) is stable. Cases (a), (b), and (c) correspond to the uncoupled case
with both modes stable, one mode stable and one unstable, and both modes
unstable, respectively. Case (d) does not arise without coupling, and represents a
type of instability that is generated only by the coupling.

We now ask: If the uncoupled motion is stable [ case (a) ], under what circurstances
can the coupling lead to instability?

We assume that the coupling is weak. Then the matrix with coupling differs only
slightly from the unperturbed matrix, and the same is true of the eigevalues. We
exclude the case where the uncoupled system is near a resonance of the type we
already know to be harmful (v integral or half-integral, eigenvalues = +1). Then
a small change in the eigenvalues cannot lead to situation (b) or (c), and it can lead
to (d) only if the eigenvalues for the uncoupled modes are nearly equal, i.e., if,
approximately,

COS [, =COS [L. (4.68)
Equation (4.68) means that either

v, + v, =Iinteger (4.69)
or

v, — v, = integer. (4.70)

We shall now show that instability of type (d) cannot arise in case (4.70), but will
in general arise in case (4.69)2.

We look for quadratic forms in the variables x, p,, z, p, which are invariant
under the transformation (4.60), analogous to W [Eq.(3.21)] in the one-
dimensional case. Such a quadratic form is given by a symmetrical matrix U which
must satisfy

(X, UX)=(MX, UMX) = (X, MUMX)

or

MUM = U (4.71)
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Using (4.66) we find that the matrix SU must commute with M. Therefore, the
symmetric solutions of (4.71) are

U, = SM* — M*S, (4.72)
where k is any integer; in general there are no other solutions except linear

combinations of the matrices U,.
Now consider the uncoupled case, where

0 0
A
0 0
M= ; 4.73
0 o : (473)
D
0 0

A and D are the matrices of form (2.23) for the x and z motion, respectively. In this
case it is easily seen that

[X, U X]=2W, sinku,+2W, sin ku,, (4.74)

where W, and W, are the invariants (3.18).

The presence of coupling will add small terms to (4.74).

When cos u, #cos u,, the invariance of (4.74) for all k implies that W, and W,
must be separately invariant. The only effect of coupling is to produce a slight
change in the forms W, and W,. On the other hand, when cos i, =cos u., then
either sin ku, =sin Su, for all k [case (4.70)] or sin ku, = —sin ku, [case (4.69)].
Then the invariance (4.74) merely means that either

W+ W,
or
W,—W,

is invariant. In the former case, which corresponds to the difference v, —v, being
integral, the invariant is positive definite, since W, and W, are separately positive
definite. The addition of small terms arising from the coupling does not alter the
positive definite character. Therefore, the motion is bounded, and we have stability.

On the other hand, if v, +v, is integral, the invariant is the difference between
two positive definite quantities, and is therefore not definite. In that case, the coupling
may (and in general will) induce instability.
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To demonstrate that instability does indeed occur, and to estimate how strong it
is, we must compute the eigenvalues of the matrix M. We write M in the form

A B
M:[C D}, (4.75)

where A, B, C, D are 2 x 2 matrices. For any 2 x 2 matrix A we define its “symplectic
conjugate,” as in (3.44),

A ST L B i
and for a 4 x 4 matrix,
_ ~ A C
M= —SMS=L_3 I_)] (4.77)
The symplectic condition (4.66) then leads to
Det A+ Det B=Det A+ Det C=Det D+ Det C=1 (4.78)
and
AC+BD=0. (4.79)

Since the eigenvalues of M come in reciprocal pairs, it suffices to find the two
quantities

1
2005;41:/11:/11—1-7 (4.80)
‘1

and
2cospy=A,=ry+—. (4.81)
These are, of course, the eigenvalues of the matrix

(4.82)

_ A+A B+C
M+M1=M+M:{Jr +C}

C+B D+D
These eigenvalues satisfy the characteristic equation

A —AA+A+D+D)+(A+A)D+D)—(B+C)B+C)=0, (4.83)
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the solutions of which are
24 =(TrA + TrD) + [(TrA — TrD)?+4 Det(B + C)] V2 (4.84)

If the expression under the square root sign is negative, A4 will be complex, and
we are dealing with an instability of type (d), induced by the coupling. If the coupling
is weak, the matrices B and C will be small, and therefore 4 can be complex only
if TrA — TrD is nearly zero and at the same time Det(B + C) is negative.

It follows in general from the relation (4.79) that, when TrA =TrD and the
unperturbed motion is stable (|TrA|<2), then, regardless of the details of the
coupling, Det(B + C) is positive in the case of a difference resonance (v,—v,=
integer) and negative in the case of a sum resonance (v, + v, =integer). To see this,
we write B and C in the form

B=ED,C= —AE (4.85)
where, from (4.79),
E=BD/(DD). (4.86)
Thus
Det(B + C) = Det(ED — AE). (4.87)

It may now be verified that, if A and D have the same determinant and the same
trace, and if E is any matrix whatsoever,

Det(D — A) Det(ED — AE)
= Det[ (D — A)(ED — AE)]
= H{Tr[(D—A)ED —AE)]}?+ & [Det(A —A)][Tr(ED — AE)]%  (4.88)

Now, if the unperturbed problem is stable, Det(A — A) is positive, equal to 4 sin? x.
Thus (4.88) is positive, and therefore Det(B + C) has the same sign as Det(D — A).
But it is easily seen that, when TrA = TrD,

(Bt B+ (0, f o+, p.)?

Det(D—A) = sin p, sin p, (4.89)
Beb-
which is positive at a difference resonance (sin u, =sin x,) and negative at a sum
resonance (sin g, = —sin u,).

We have thus proved that coupling will induce instability at a sum resonance but
not at a difference resonance. The proof is independent of the form of the coupling;
it holds whether the coupling is caused by twists of the magnets about the beam
axis or by longitudinal magnetic field. The proof is also independent of perturbation
theory; it holds just as long as the coupling is not strong enough to alter the signs
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of Det(A — A) and Det(D — A). In these respects our proof is more general than the
proofs given in refs. [ 12] and [ 14].

We now turn to a quantitative estimate of the strength of the instability. If a
short section of magnet of length ds at s is rotated through a small angle 0, the
effect is that the overall matrix at s must be multiplied by

I+ [K,(s)—K,(s)] 0ds (4.90)

—_ o O O
S O O O
S O = O
S O O O

where 7 is the unit matrix and K, and K, are the focusing functions at s. Thus the
perturbed matrix for the whole revolution is

0 0 4, 0
M =M, +e€ds D, g AO” 8 : (491)
D,, 0 0 0
where € = (K, — K,) 6. This gives
A=Det(B+C)=A4,,D,,(€ ds)*
=B, B, sin u,, sin u (€ ds)> (4.92)

This is, of course, positive at a difference resonance (sin u, =sin x,) and negative at
a sum resonance (sin i, = —sin u,). Thus we have an example of instability arising
at a sum resonance but not at a difference resonance.

Now consider again a random distribution of tilt angles in M magnets comprising
a machine.

The expectation value of Det(B + C) will be the sum of terms like (4.92) for all
the magnets. We have, then,

—167°n> R? .
<A> :W? Sln2ﬂ<02>. (493)

Instability will arise if
(cosu,—cos pu,)>< —A.

There is, therefore, a stopband of width

. 12
Sv=as =2< A> . (4.94)
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Its root mean square width is, by (4.93),

4|n| R

5 _ =
OV tms M2 P

<O rms- (4.95)

For the Brookhaven parameters we obtain

{0V ms = 16.0< 0 .-
Thus, if the rms tilt is 10 =3 radian, we obtain an rms stopband width of 0.016 unit.

(d) Nonlinear Effects

The actual equations of motion will contain nonlinear terms as well. The detailed
theory of the effects of nonlinearities is beyond the scope of this paper, but the
following facts are worth mentioning.

Nonlinearities modify the behavior of the resonances we have just obtained from
the linear theory. The shift of the equilibrium orbit, which is infinite according
Eq. (4.7) when v is integral, becomes finite, and the unstable oscillation arising
when v is half-integral or when v, + v, is integral also becomes limited in amplitude.
Both these effects arise because the nonlinearity causes the frequency v to vary with
amplitude; thus as the amplitude increases the frequencies change, and the resonant
condition ceases to apply.

On the other hand, nonlinearities can also cause instability in situations which
would be stable in the linear theory. Specifically, instability can arise if

av, + bv, = integer

with ¢ and b integral [15]. However, it has been shown by Moser [16] and
Sturrock [ 17] that these instabilities will arise only if @ and b are of the same sign,
or if @ or b is zero (analogous to the result in linear coupling resonance). Further-
more, if a+b>5 the motion is generally stable even at resonance, because the
detuning effects of the nonlinearity dominate the resonance effects. For a+b =3,
the system is generally unstable, while for a +b =4, the system may be stable or
unstable depending on the relative magnitudes of certain coefficients; detailed
calculations show that it is more likely to be stable than unstable for practical
machine designs. To summarize the effects of imperfections,
v, or v, =integer

imperfections will generally cause a large shift in the equilibrium orbit (infinite in
the linear approximation). If

2v, or 2v, or v,+ v, =integer,

X
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4+

INTEGRAL RESONANCES (@ OR b =1)

= e —— —-  OTHER LINEAR RESONANCES (a+b=2)
————————— QUADRATIC RESONANCES (a+b=3)
CUBIC RESONANCES (a+b=4)

FIG. 3. Values of v, and v. at which constructional errors may induce instability.

oscillations about the equilibrium orbit are in general unstable. Nonlinearities
produce further instabilities if

3v, or 2v.+4+v. or v.+2v. or 3v =integer
and may also do so if
4y, or 3v.+v, or 2(v,+v.) or v.+3v., or 4v, =integer.

The values of v, and v, at which resonances may lead to instability are schemati-
cally shown in Fig. 3.

5. PHASE STABILITY

The synchrotron [ 18, 19] is made possible by the phase stability of the acceleration,
i.e., by the fact that a particle which arrives at the accelerating gap at a phase of
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the accelerating field different from the equilibrium phase experiences a phase
acceleration or “phase restoring force” toward the equilibrium phase, provided the
phase displacement and the momentum deviation of the particle are not too great.

Phase stability arises from the fact that the period of revolution of a particle with
more (or less) than the synchronous momentum differs from that of the particle
with the synchronous momentum. In the conventional synchrotron we have

At/t=(4C/C) — (4v/v) =[(1 —n) ' — (Mc*/E)*](4p/p), (5.1)

where At is the change in the period 7 of revolution, 4C is the change in the orbit
circumference C, and Av is the change in the velocity v, associated with a change
Ap in the momentum p.

In the alternating gradient synchrotron the relation between orbit circumference
and momentum is altered, so that the term (1 —n)~! in (5.1) must be replaced by
a different quantity, depending on the field configuration. We shall see that this
quantity, the “momentum compaction coefficients,”

lele

- 52
i Ap/p (>:2)

is small compared to unity in synchrotrons with strong alternating gradients. Then
(5.1) is replaced by

At Ey\Adp [(E? E*\A4dp  Ap
— =\ ) =\ | =" (5.3)
t E“) p E,| E )4 P
where
E, = Mc*/a'? (54)

may be called the “transition energy,” and E| is the rest energy.

The coefficient # of Ap/p in (5.3) is negative for energies less than E; and changes
sign as the particle is accelerated through E,. As pointed out in CLS, this means
that at this point the equilibrium phase angle shifts from the rising to the falling
side of the voltage curve. To retain an accelerated beam beyond this energy it will
be necessary to shift the phase of the applied radiofrequency voltage by the
appropriate amount at the proper time.

The equation of phase oscillation may be obtained from the two equations [ 3, 5, 20]

d (4E\ eV . .

7 <ws> = (sin ¢ — sin ¢,) (5.5a)
de Ap  nho, AE

E—wlznhws—z ﬂz ?, (55b)
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where the applied voltage is
V sin U (ho, + o,) dt} :

@, is the angular velocity of the particle, 4 the harmonic order (i.e., the applied

frequency is designed to be /4 times the particle frequency), and w, the frequency error,

i.e., the difference between the actual applied frequency and its ideal value hw;.
Combining the two Egs. (5.5) we find

! d[E<d"5 wlﬂzd/(sin(/)—sind)o) (5.6)

hw? dt | y \di 2n

where w,=w,/f is the circular frequency of a particle with velocity c¢. In the
absence of frequency errors Eq. (5.6) leads to stable small oscillations about that
phase at which sin ¢ =sin ¢, and 7 cos ¢, <0, while the other phase at which
sin ¢ =sin ¢, is a position of unstable equilibrium.

Just as in the case of the conventional synchrotron, the phase oscillations are
stable for the range of phases from = — ¢, to that phase ¢, for which

COS ¢+ ¢, SiN ¢y = —COS ¢+ (T — ) sin Py. (5.7)

The amplitude of the associated radial oscillations may be obtained by using (5.2)
and (5.5b). The amplitude of oscillations reaching to the limits of phase stability is

F=a {n,;;m [(z— 29, sin ¢o—2cos¢o]}m. (5:8)

This differs from the expression for the conventional synchrotron in that it contains
the factor

o/ |n|"? (5.9)
instead of
[(1—n)(1—(1—n)Ey/E*)] "2 (5.10)

For nonrelativistic energies, # ~ 1, and (5.9) is very small compared to (5.10). There-
fore the radial amplitude of synchrotron oscillations is greatly reduced in alternating
gradient synchrotrons as compared to conventional synchrotrons. In fact, this
reduction is so great that, for reasonable designs, the radial synchrotron oscillation
amplitude is less than the betatron oscillation amplitude. This fact reduces the
horizontal aperture requirement to the point where it is not much greater than the
vertical requirement—in contrast to large conventional synchrotrons such as the
Cosmotron at Brookhaven, which require horizontal apertures about five times
their vertical apertures.
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The small value of « does, however, introduce a complication. If the transition
energy E, = E, /o' lies between the initial and final energies, # changes sign as the
transition energy is passed, and the position of stable equilibrium jumps from ¢,
(lying between 0 and 7/2) to © — ¢y =¢;.

Can the particles which were oscillating about ¢, before the transition be made
to oscillate stably about ¢, afterwards?

Consider Eq. (5.6) before the transition and for small deviations in phase from
¢o. The equation becomes

d {Edqﬁ} hwy?eV cos ¢, (6 — o) =0, (5.11)

dt —n dt 2n

As long as # varies slowly the solution is closely approximated by the adiabatic
form

¢ — o= A(—n/E)" cos <j9dz+5>, (5.12)

where

Q = (—nheV cos ¢o/2nE)"* w, (5.13)

is the circular frequency of synchrotron oscillations, and J and 4 are constants.
Thus the amplitude of phase oscillations damps down to zero as —# approaches
zero. The concomitant radial oscillations are given, according to (5.5), by

A A 2V2 2 1/4
ar_ _?“ <€_ﬂ°§§/5> in <j o dt+(5>, (5.14)

so that their amplitude appears to become infinite as # — 0. Actually this form or
the adiabatic approximation is, of course, not valid when # approaches zero. A
better procedure is to approximate #/E by a linear function of ¢ in that region; this
leads to

¢—do=(—Ey/E)"* Xl/z[a']z/s(X) +bN,;5(X) ], (5.15)

with X =s Qdt; J,; and N, are Bessel and Neumann functions of order 2, and
a and b are constants. For large values of X this is identical with (5.12); for X — 0
(5.15) approaches

¢—¢o = — a1 K (5.16)

while the radial amplitude approaches

Ar 23/2(31/2a _ b) o <he VEO COS ¢0>1/2, (517)

T 3B K 27E,2
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with

Ko <2E07eVsin2 ¢0>1/12.

5.18
hnE,® cos ¢, (5.18)

It is assumed here that the transition energy FE, is relativistic.
The interesting quantities are the ratios of initial amplitudes to the amplitudes at
transition. These are, for the phase oscillations,

(9—do)y 27" (Ei>m p (5.19)

(¢ — o), 31/3F(%) Eqn; .
and for the radial oscillations

Ar/R),  4n'? B(E.Ejn,)"

( }"/ )1 T ﬂl( 0+~ 771) ) (520)

(4r/R);  3°Pr(3)  EK

Numerically, for the parameters for the 30-Bev Brookhaven accelerator (injection
at 50 Mev, E; *x9Mc?, eV =190 kev, sin ¢,=3, h=12), we find

W =0 103 M:OAZ

(¢ — o) (4p/p);

Thus at the transition energy the particles are very sharply bunched in phase; their
momentum spread is fairly large but still relatively smaller than at injection, at least
in this numerical example.

This sharp bunching makes it possible to reestablish phase stability beyond E; by
shifting the phase of the applied rf at the time of transition. To see how this is
possible we multiply (5.6) by #%

2

nodo o el
ha)02 dt LE(Y —wi]) 2n

(f—w,) +

—s (sin ¢ —sin ¢y)=0. (5.21)
hw,
When 7 is small the only important term is the first. Then the phase of the particles
can be shifted by simply shifting the phase of the rf by ¢, — ¢, i.e., by introducing
a perturbation w, in the applied frequency for a time (¢; — ¢,)/w;.
The time during which this has to be done is not very critical, since the time con-
stant for phase changes, i.e., the synchrotron oscillation period, is quite long. The
second and third terms of (5.21) will be small compared to the first as long as

1Qn/jl <1, (5.22)

which is the case when

|E—E,| (EleVsin2 o >1/3. (523)

E, ArhE,? cos ¢,
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For our parameters this condition is |E— E; | <124 Mev, which is satisfied during
approximately 7 milliseconds.

This agrees with an expression found by Goldin and Koskarev [21].

The quantity a which determines the transition energy is found as follows: When
the particle has momentum p + Ap, we have

d>x (1-n) 14p

2

—s X .
s> p pp

(5.24)

This is an inhomogeneous Hill’s equation of the form studied in Section 4a. We
solve it by the method of Fourier components used there: If

ﬂ3/2 )
—=Y a,e™), (5.25)

p(s)

then the displaced equilibrium orbit is

Ap a,e™
x="" B12v? % v;’_ i (5.26)
and, of course,
1 (22 32
akz—j BT oo gy, (5.27)
2n 0 P

The difference in length between this orbit and the original orbit x =0 is

2n ﬁx

AC= j Sds=v| " Ra, (5.28)

where we use ¢ = j ds/vf as the variable of integration. Using (5.25) and (5.26), we
find

ap < la’|

AC=2mv?
p CV—K

(5.29)

and

(5.30)

In most accelerator designs, the dominant term in (5.25) and, therefore, in
(5.30), is the one with £k =0. If the magnet is composed of sectors in all of which
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the radius of curvature p is the same, separated by straight sections, we have
approximately

ljzn[ﬁd _ 1 fcﬁl/z
o p 27y

do=7- B ds~(RH)'2, (5.31)
T 0 P

where we have replaced f by its average value R/v.
This leads to

1
== 5.32
= (532)
and therefore,
El = VEo.

If the number of periods of the orbit is &V, the only terms with k£ # 0 in (5.30) will
be those with k= + N, +2N, etc. Since v will generally be less than N, all the
terms with k>0 will then be negative. This fact has enabled Vladimirskii and
Tarasov [22] to propose an accelerator design in which « is zero or negative, thus
eliminating the transition energy. This is done by inserting K “compensating
magnets” with reversed fields but the same gradients as would be called for in a
design without compensating magnets. If v is slightly less than K, the term k= + K
in (5.30) is large and negative, and can be made to cancel the leading term k£ =0.

APPENDIX A: EXISTENCE OF EQUILIBRIUM ORBITS

Consider a magnetic field B in space. A particle of momentum p and electric
charge ¢ moving in this field will move along a path whose curvature vector is

B
- ><a, (A1)
pc

where o is the unit vector in the direction of motion. If a closed curve satisfies (Al)
throughout its length it is a possible equilibrium orbit for a particle of momentum
p; conversely any equilibrium orbit must satisfy (Al).

We shall now show that a curve which encloses the maximum flux as compared
to neighboring curves of the same circumference satisfies (Al) for a suitable
momentum, and is therefore a possible equilibrium orbit. Consider an arbitrary
closed curve of circumference C. Let s be the are length measured along this curve,
and let its location be given by

r=r(s) (A2)
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Any other curve near the given one may be described by the equation
r=ry(s) =r(s) +x(s), (A3)

where s is still the length of the first curve, and x(s) is a vector perpendicular to the
first curve. The circumference of the curve (A3) is

C
c2=c+j X % ds, (A4)
0

where k(s) is the curvature vector of the first curve at s. If the second curve is
restricted to be a curve of the same length as the first,

C
f X % ds = 0. (A5)

0

But the flux enclosed between the two curves is

C C
Acb:j B.axxds=j x-Bx a ds. (A6)
0

0

If the original curve is an equilibrium orbit, (Al) holds, and therefore (A6)
vanishes whenever (A5) does; hence the flux is stationary. Conversely, if the flux is
stationary, (A6) must vanish whenever x(s) is chosen so that (AS5) vanishes; there-
fore a relation of the form (A1) must hold, and the curve is a possible equilibrium
orbit. But a curve of given length enclosing maximum flux for all curves of that
length will surely exist if the field strength is bounded. Hence equilibrium orbits
exist.

The maximum-flux orbits thus constructed will, in many cases, pass through the
currents and iron which produce the magnetic field. The usable orbits will, in
general, enclose an amount of flux that is stationary but not maximal. The existence
of such orbits cannot necessarily be proved in the general case. However, in the
special case of a field with mirror symmetry an equilibrium orbit may be found by
constraining the orbit to lie in the plane of symmetry. The curve of given length
enclosing maximum flux subject to this constraint will be an equilibrium orbit and
will not intersect the iron or currents if these lie outside the plane of symmetry.

This result appears to be in contradiction to the result found in Section 4a, where
we saw that when the oscillation frequency v is integral small imperfections of the
magnetic field led to infinite displacements of the equilibrium orbit. However, that
result was based on the linear approximation to the equations of motion; in an
actual magnetic field the equations of motion are never exactly linear, and the
actual displacement of the equilibrium orbit is always finite (though comparatively
large when v is integral).
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APPENDIX B: HAMILTONIAN FORMULATION OF
THE EQUATIONS OF MOTION

We suppose that the motion of the particle takes place in the vicinity of a given
curve in space—which may or may not be an equilibrium orbit as defined in
Appendix A.

We introduce a special curvilinear system of coordinates in the vicinity of this
reference curve. Let the reference curve be given by

r=ro(s) (BI)

where s is the are length measured along the curve from some fixed initial point.
Then

als) :% (B2)

is the unit vector tangent to the curve at s, and

= —Q(s) B(s) (B3)

is the curvature vector; Q(s) is the numerical value of the curvature and B(s) is a
unit vector. The plane containing the point ry(s) and parallel to a and B is called
the osculating plane; its unit normal is

v(s) = a(s) x B(s). (B4)

Since @, B, and y are unit vectors, it is easily seen that

P’ =Q(s) a(s) + w(s) y(s),
Y = —o(s) B(s),

(B5)

where a prime denotes differentiation with respect to s, and where w(s) is a quantity
known as the torsion of the curve—for a plane curve, w(s) vanishes identically.

We now define the position of any point in space not too far from the reference
curve by

1(s, X, z) =ro(s) + xB(s) + zy(s), (B6)
where s, x, z form a system of orthogonal curvilinear coordinates. (B6) is unique

for points whose distance from the reference curve is less than the radius of
curvature p =1/Q.
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To express the equations of motion in Hamiltonian form in terms of these coor-

dinates, we must find the momenta canonically conjugate to s, x, z. This is done by
performing a contact transformation produced by the generating function (23)

F(an Py, Pz 5 X, Z) =p- [rO(S) +XB(S) +ZY(S)]5 (B7)

where py, py, p are the components of the linear momentum p in the Cartesian
(XYZ) coordinate system. We obtain the canonical momenta

oF
Pi=5 = b [(149Qx)a+w(xy—zB)],
oF
Px:5:P~B, (B%)
X
_9F_
pz_az_p‘y'

The equations of motion are derived from the Hamiltonian
H=eV+c[m*?+(p—eA)*]"?, (B9)

where V" and A are the scalar and vector potentials of the electromagnetic field. In
terms of the new variables this equals

2 [ps_eAs+ wz(px_eAx)

1
H=eV+c{im?**+—
(1+Qx)

12
ox(pa—ed )t (pa—ed )+ (pz—eAzV} , (B10)

where A,, A, and A, are obtained by inserting the vector A in (B8) instead of p.
Note that 4, and p, are not the components of the vectors in the tangential direction.
The Hamiltonian equations of motion are

0H . O0H

S=a, Ps=—a,

0H 0H
)é:is p.xz_ia (Bll)
0P

ox
0H ) 0H

22@, Pz:—g'
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Using the first of these equations, we can change to s as the independent variable
instead of the time ¢. The equations transform to

. Ops ., Opy
- apx; px - ax )
ap ap
r_ 0P 1 Ps B12
z . P =" (B12)
ap ap
Zr — S H/ — S
oH’ ot’

where primes denote differentiation with respect to s, and where p, is expressed as
a function of x, p,, z, p,, H, t, s, obtained by solving (B10).
Equations (B12) are again in Hamiltonian form, with the new Hamiltonian function

G=—p, (B13)
and the pairs of canonically conjugate variables
X, Py 5P L —H (B14)

In the particular case where the potentials 7 and A are independent of time,
the new Hamiltonian G is also time-independent, and therefore ¢ is an ignorable
coordinate in the system (B12). In this case the transformation just performed
reduces the number of degrees of freedom of the problem from three to two, but at
the cost of having the new Hamiltonian dependent on the independent variable s.
This procedure is important in classical dynamics [ 24, 25]. Because of the geometrical
significance of the variable s, the dependence of the new Hamiltonian G on s is
periodic.

The linearized equations of motion are obtained by expanding G as a power
series in x, p,, z, p, and retaining only terms up to the second order. We consider
a static magnetic field, so that =0 and A is independent of time. We may choose
a gauge such that the power series expansions of the components of A are in the
form

A,=ax+bz+cx®>+dxz+ez> + -,
Ay=—fz+ -, (B15)
A =fx+ .

Terms of higher order than those given in (B15) do not appear in the expansion of
G up to second order. The coefficients a, b, ¢, d, e, f, are periodic functions of s.

The only one of Maxwell’s equations which imposes a restriction on the
coefficients up to this order is

(VxB),=(VxVxA),=0, (B16)
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which leads to
2(c +e) = Qa + 4of. (B17)

If the reference curve is taken to be an equilibrium orbit of a particle of momentum
p, we have

b=0, a= —Qple. (BI18)

In this case, by substituting (B15) in (B10) and (B12), we obtain a Hamiltonian G
of the form (4.59), and the homogeneous equations of motion used in Sections 2
to 4.
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