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The effects of the radiation emission on the motion of electrons in high-energy synchrotrons are analyzed.
The damping rates and quantum excitation of the three principal modes of oscillation are derived for strong
focusing and constant gradient accelerators. Methods for correcting the radiation effects for strong-focusing

accelerators are discussed.

INTRODUCTION

HE general method of treating the motion of rela-
tivistic electrons in circular accelerators would
include the interaction between the electron and radia-
tion field by the general methods of quantum electro-
dynamics. For practical electron energies and magnetic
fields, the nature of the radiation is accurately given
by a classical calculation. Then the electron motion
may be analyzed by determining the quantum states of
the electron in the magnetic guide field and considering
the classically calculated radiation as a perturbation
coupling these states. This approach has been used by
Sokolov and Ternov.! In practical accelerators the time
associated with the emission of radiation quanta is short
compared with the periods of the classical modes of
oscillation of the particles, and the radiation effects may
be analyzed as a damping and a driving force applied to
these modes.

NATURE OF RADIATION LOSS

The instantaneous power radiated by a relativistic
electron in a magnetic field has been calculated to be?

P, =%('B/m?c®) (E/mc?)*. 1)

E is the electron energy, and B is the magnetic field.
This is obtained by a classical calculation using the
relation %(e%a?/c®) in the rest system of the electron.
Quantization of the radiation field would reduce the
radiated power below this classical value at extremely
high electron energy. This will occur as the energy of
the radiated quanta becomes comparable to the total
electron energy. At this energy direct pair production
in the magnetic guide field would also become important.

The spectrum of the radiated energy has been calcu-

lated classically to be?

P(e)=(3%/8m)(Py/e) | Ksa(ndn, )

€/ec

where P(e) is the frequency of emission of photons of
energy e per unit energy range; the critical energy e, is
given by 3 (%c/r)(E/mc?)?; r is the radius of curvature

* Supported by the U. S. Atomic Energy Commission.

! A. A. Sokolov and I. M. Ternov, J. Exptl. Theoret. Phys.
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of the electron in the magnetic field; e, is approximately
the maximum energy photons radiated. For a magnetic
field of 10 kilogauss, the photon energy becomes com-
parable to the electron energy at an energy of about
1015 ev.

The radiation is emitted in a narrow cone about the
instantaneous direction of motion, with an angular
width given approximately by mc?/E.

In order to conserve momentum in the radiation of
a photon of energy ¢, the magnetic guide field must take
up a momentum equal to

Ap=[(E/cf— (mopP—[(E— e/~ (mey i~ ¢/t
~3(e/c)(mc*/E)>.  (3)

Then for E>>mc* the momentum transferred to the
magnetic field may be neglected, and the average effect
of the radiation loss is to produce a force on the electron
equal to P, /¢ and directed opposite to the instantaneous
velocity of the electron.

The path length associated with the emission of a
photon is related to the angular width of the direction
of the radiation. The arc associated with the emission
of a photon is given approximately by mc?/E. Then for
E>mc?, a photon may be considered to be emitted in
a time very short compared with the periods of the
modes of oscillation of an electron, which are compa-
rable to the period of one revolution.

The average force P,/c of the radiation loss will pro-
duce damping effects on the various modes of oscilla-
tion, and the sudden emission of the individual photons
will excite the various modes as a driving force.

DAMPING OF OSCILLATION AMPLITUDES
BY RADIATION LOSS

The general method of describing the motion of a
particle in a circular accelerator is to determine a
principal orbit, and then analyze small deviations from
the principal orbit as a linear combination of normal
modes of oscillation. The principal orbit may be de-
fined as a particle motion which is repeated identically
in each complete period of the accelerator. For small
deviations from the principal orbit, a transfer matrix
for a complete period may be written relating initial to
final deviations. This is usually done for radial and
vertical displacements and wvelocities, and may be
extended to a sixth order transfer matrix relating initial
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to final values of radial and vertical displacements and
velocities, and also energy variation, and longitudinal
displacement, from the values of a particle on the prin-
cipal orbit. For this general transfer matrix, the com-
plete periods of the accelerator are defined so as to be
identical in both magnet structure and radio-frequency
accelerating system.

The characteristics of the modes of oscillation are de-
termined by solving for the principal values of the sixth
order transfer matrix. If the particle motion is stable
such that the particle oscillates about the ideal positon,
and since the transfer matrix is real, the principal values
will be three pairs of complex conjugate numbers, which
determine the frequencies and damping rates of the
three principal modes of oscillation. In most accelerators
there is one mode in the vertical plane corresponding
to the vertical betatron oscillations, and two modes in
the radial plane, one having a lower frequency and
large energy and phase variations called the synchronous
oscillation, and the other having a higher frequency and
only small energy and phase variation called the radial
betatron oscillation.

Consider an element of the accelerator of infinitesimal
length. The element may include both a magnetic guide
field and a radio-frequency accelerating field. Let x, o,
v, %' represent the variation of displacement and angular
deviation in the radial and vertical planes. « and y are
measured normal to the principal orbit at that point.
AE and z represent the variation in energy and azi-
muthal position from the values of an ideal particle, as
measured at the time the particle transverses the
infinitesimal element. The sixth order transfer matrix
for the infinitesimal element will have infinitesimal non-
diagonal terms which are first order in the length of the
element, and the diagonal terms will differ from unity
by a quantity which is proportional to the infinitesimal
length of the element. In order to determine damping,
the determinant of the transfer matrix of the infinitesi-
mal element is evaluated. The only terms in the de-
terminant which will be first order in the length of the
element will be due to the diagonal terms of the matrix,
and all higher order terms may be neglected. The de-
terminant of the transfer matrix is given by 142 0ns,
where 6., are the differences of the diagonal terms from

INFINITESINMAL
ELEMENT

Fi1G. 1. Reduction in angular variation due to energy gain.
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unity. The diagonal terms for x, y, z will not have a
first order difference from unity as changes in «, y are
only related to #’, ¥" and changes in z are related to x
for relativistic particles.

The diagonal term for AE may be determined from
the characteristics of the radiation loss,

P, < 2B« [14-2(AB/B)+2(AE/E))]  (4)

for small variations in E and B from the values for an
ideal particle. B is only a function of position, then the
diagonal term for AE due to radiation loss is 1— 28e1/ E,
with de; the radiation loss for an ideal particle in the
infinitesimal element. The energy gain from the radio-
frequency system is not dependent on AE and con-
tributes no change in the AE diagonal term.

The difference from unity of the «” and 3’ diagonal
terms is determined from the energy gain from the
radio-frequency system and is unaffected by radiation
loss. The energy increase due to the radio-frequency
system will add a momentum change parallel to the
principal orbit, as shown in Fig. 1, and will reduce the
angular variation. From Fig. 1, 6z’ = — (8es/Eo)x’ and
the diagonal term for &’ is 1 —des/ Eo, with de; the energy
gain from the radio-frequency system in the infinitesimal
element for an ideal particle. Similarly the diagonal
term for y’ is 1—8es/Eo. Then the determinant for the
infinitesimal element is

1+Zﬁnn=1'—2561/E0—25€2/E0. (5)

The determinant of the transfer matrix for one com-
plete period is the product of the transfer matrices of
the infinitesimal elements of that period. Since the
fractional radiation loss in one period is very small,
only first order terms need be considered and the de-
terminant of the transfer matrix for one period is
given by

D=1—2€10/E0—2620/E0, (6)

where €0 and eg are the radiation loss and energy gain
from the radio-frequency system in one period.

The characteristics of the principal modes of oscilla-
tion are determined by solving for the principal values
of the transfer matrix for one complete period. If all
modes are oscillatory the principal values will be of the
form e’ with the six values of 7/ being three pairs of
complex conjugates.

Then

H6W’=D=1—2€10/E0— 2620/E0. (7)

v{ =a/ %18/, where o/ is the fractional damping of a
mode in one period of the accelerator. Then

expy_2a; =1—2¢10/ Eo— 2¢20/ E. (8)
For |a/|«K1, then
> o =— €10/ Eo— €20/ E. 9

For equilibrium conditions the radiation loss is equal
to the energy gain from the radio-frequency system for
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one complete period, e1o=e20=€o. Then
Zai' = 260/E0.

The sum of the fractional damping of the three modes
in one period is thus — 2eo/ Eo, with €, the radiation loss
in one period. The sum of the damping rates of the
three modes is therefore given by

2 a;=—2Pyo/Ey, (11)

where P, is the average rate of radiation loss, and the
amplitude of an oscillation varies as e*. This is a gen-
eral result for any type of electron accelerator if the
average electron energy is constant. For a varying
electron energy, adiabatic damping would be super-
-imposed on the radiation damping.

For an accelerator in which there is no coupling be-
tween the radial and vertical planes, the transfer matrix
will contain no nondiagonal terms between y or " and
the other coordinates x, #’, AE, z. Then the second order
matrix for the vertical plane may be diagonalized
separately, and the product of the principal values will
be equal to the determinant. The determinant of the
second order matrix for the vertical plane of an infini-
tesimal element is given by 1—=éey/Ey, and for the com-
plete period is 1—eo/E,. Then 2a,’=—e/E, and
a,’ = —eo/2E,. The damping rate for the vertical beta-
tron oscillations is therefore

Oy = —P70/2E0,

(10)

(12)

for any electron accelerator with no coupling between
radial and vertical planes.

In order to determine the individual damping rates
of the radial betatron and synchronous oscillations, it
is convenient to calculate the damping rate of the
synchronous oscillations and then determine the damp-
ing rate of the radial betatron oscillations, from the
total damping rate.

It is assumed that the frequency of the synchronous
oscillation is very low compared with the betatron
frequency, such that a particle undergoing synchronous
oscillation may be considered to travel on equilibrium
orbits corresponding to adiabatically changing values
of energy deviation.

The equations of synchronous oscillation may be
written

dE/dN= €E2—€1= 620+ (dez/dZ)Z-—* €10— (del/dE)AE (13)

It is assumed that the energy gain from the radio-
frequency system in one complete period (ez), is only
a function of the phase position. The effect of more
general radio-frequency fields will be considered later.

Since the particle is assumed to travel on an equi-
librium orbit corresponding to an energy variation the
radiation loss in one period is only a function of energy.

For equilibrium conditions, the radiation loss for a
particle on the principal orbit is equal to the energy
gain from the radio-frequency system ey o= ez0=eo.
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Also since the particle is assumed to travel on an
equilibrium orbit, the change in path length Al is only
a function of energy. For relativistic electrons the
change in azimuthal position in one period is equal to
the change in path length.

The equations of synchronous oscillation become

dE/dN = (des/dz)5— (de,/dE)AE,

dz/dN =— (dl/dE)AE. (14)

The solution of the equations has the form e(as'+#s)N
and the damping of the synchronous oscillation in one
period is given by

o =—3%(dei/dE). (15)

In the Cambridge type of accelerator, the principal
orbit is on an isomagnetic line, except for straight
sections. Then the radiation loss may be expressed as a
first order expansion about the principal orbit.

€0 E232 (r0+x)

a=— | ————ds,
lo E02B()21’0
€ AE AB «x

a=— [1+2—+2—+—]ds, (16)
l(} Eo B() 7o

€G1= 60'+‘ ZGQ(AE/E())
€0 €0 X
+2— f (AB/By)ds+— f (—)ds.
lo lo 7o

The last term represents the increase in path length.
The straight sections are excluded from the integral
and from the path length /, as they do not contribute
to the radiation loss.

The equation of motion of an electron in the mag-
netic guide field may be written

dx'/ds=— (1/r0)[AB/Bo+x/ro—AE/Ey]. (17)

For an equilibrium orbit the total change in &’ in
one complete period is zero.

G-I G)
(). a

The straight sections are also excluded from the
above integrals as they contribute no change in the
angular variation.

The change in path length in one period is given by

Al= f (%)ds.
[ )

Then
(19)
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and

E1=€0+460(AE/E0)~€0(AZ/Z0). (20)

The {ractional increase in path length in the magnet
is related to the fractional increase in energy (for
relativistic particles), by a momentum compaction
factor @. The momentum compaction factor, in this
derivation, relates the change in path length to the
fractional momentum change and the total path length
in the magnets, excluding the straight sections:

a=(Eo/l)(Al/AE).
Then
dei/dE= (eo/Eo) (4—a),

a,’=—(eo/2E,) (4—a). (21)

The damping rate of the synchronous oscillations is
given by

as=—(Pyo/2E,) (4—a). (22)

The damping of the radial betatron oscillations in
one period is given by

a) =—2e/Eo—a)’ —as’ = (eo/2E0)(1—a), (23)
and the damping rate is given by
ar=(P40/2E0)(1—a). (24)

For an alternating gradient accelerator-of the Cam-
bridge type, « is small compared to unity; then the
radial betatron oscillations are antidamped by the
radiation loss and grow exponentially with time.

For a constant gradient accelerator, a=1/(1—n), we
have

Qy = —P—yo/ZEo,

a;=—[(3—4n)/(1—n) ](Pr0/2E0),
ar=—[n/(1—=n) J(Pyo/2E).

These results are valid for a constant gradient ac-
celerator with straight sections, as the straight sections
are excluded from the definition of « used in the pre-
vious derivation. The results for the constant gradient
accelerator have been derived by several authors.®—%

In a magnet structure of the FFAG (fixed frequency
alternating gradient) type,” the equilibrium orbits
change in size, but maintain the same shape for differ-
ent energies. In this type of accelerator at every angular
position B« E/r for equilibrium orbits of different
energy. In this case, the momentum compaction factor
a is defined as Ar/ro=a(AE/E,); then for each element
of the accelerator AB/By=AE/Ey—Ar/ry, and the

(25)

3D. Bohm, Phys. Rev. 70, 249 (1946).

¢ M. Sands, Phys. Rev. 97, 470 (1955).

5. Henry, Phys. Rev. 106, 1057 (1957).

6 A. A. Kolomenskii and A. N. Lebedev, Proceedings of the
CERN Conference on High-Energy Accelerators, Geneva (European
Organization of Nuclear Research, Geneva, 1956), Vol. 1, p. 447.

7K. Symon et al., Phys. Rev. 103, 1837 (1956).
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radiation loss in each element is
a=e 14+ (4—2a) (AE/Eo)+a(AE/Ey) ],
€1= 60[1+ (4—0{) (AE/EO)].

Thus the radiation damping rates of the oscillation
modes in the FFAG accelerator, in terms of a momen-
tum compaction factor «, are identical to the alternat-
ing gradient accelerator of the Cambridge type. In
this case, a relates the change in path length to the
fractional momentum change, and the total circum-
ference including straight sections.

(26)

OSCILLATION AMPLITUDES DUE TO
RADIATION EFFECTS

The amplitude of oscillation of the principal modes
is determined by the damping rates of the modes, the
initial amplitudes, and the excitation by the quantum
emission of radiation. The radiation of a photon of
energy e by an electron causes a shift in the equilibrium
orbit by an average amount roa(e/E,). The radiation
of the photon takes place in a time which is short com-
pared with the period of betatron oscillation. This
sudden radial shift in equilibrium orbit will cause
radial betatron oscillation of amplitude approxi-
mately 7oa(e/Eo) about the displaced equilibrium orbit;
also the equilibrium orbit will now oscillate about the
principal orbit as a synchronous oscillation of amplitude
roa(e/ Eo).

Each photon will then add an oscillation of amplitude
7o (¢/ Eo) to both radial betatron and synchronous oscil-
lation. The phases of theseincremental amplitudes will be
random, so the increase in mean square amplitude due
to the radiation of a large number of photons will be
(roa/ Eo)*Ze. The rate of change of the mean square
amplitude of betatron oscillations is given by

() [ e

+za,(x2)~Eio(%Ef)(x2). @7

The last term is due to adiabatic damping of betatron
oscillations with increasing particle energy.

The integral /i® €P(e)de has been evaluated? to be
(55/233%) Poe.. Therefore

d(%?)/dt=(55/223%) (roa/ Eo)*Pye€c

+ (1—a) (Pyo/Eo) (+*) — (1/Eo) (dEo/d) (3%), (28)
and
Eq Eo P.yo' ,
=) e [ T

55 frea\2 pEo
+ (——) f EyfP,e.
23833\ E, E1
/

Ey P’yO ’
Xexp[ f (1—a)~—dt”]dt’ . (29
o Y (29)

0
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The first term is due to amplitudes at injection, and
the last term is due to quantum fluctuations in the
radiation loss.

The parameters of the Cambridge accelerator are
70=25.8 m, @=0.042, and E;=20 Mev. The magnet is
excited with § sine wave, and % dc bias. At magnet
frequencies of 15 and 30 cps, the amplitude of radial
betatron oscillations at 6 Bev are

(a2) = (7.7x1)%+ (14.9 cm)?
(#2) = (0.67x1)*+ (1.63 cm)?

It is seen that the antidamping of radial betatron
oscillations may produce large radial oscillations and
result in loss of particles at 6-Bev operation.

The radial amplitude of the synchronous oscillations
is determined by a similar equation with «, replaced
by as;. The factor a; is negative for the alternating
gradient accelerator and large compared with the
reciprocal of the accelerating time. The radial
amplitude will then approach an equilibrium value due
to the radiation damping and quantum effects, which
is given by

(2%) = (55/2%3%) (roe)* (ee/ Eo)[1/ (4—0) ].

This mean square radial amplitude is quite small for
the Cambridge accelerator, but there will be large
phase oscillations associated with the radial amplitudes,
which increase the radio-frequency voltage required to
maintain the particles in a phase stable position.

The damping rates for the radial betatron and syn-
chronous oscillations will then not be observed di-
rectly due to the increase in oscillation amplitudes
produced by the quantum fluctuations, unless the
amplitudes are much larger than the increase due to
quantum fluctuations in one damping or antidamping
period.

The vertical betatron oscillations are damped by
the radiation loss, and not excited by sudden changes
of energy, and will have a very small amplitude at high
energy. The radiation will excite very small vertical
oscillations due to the transverse momentum trans-
ferred to the electron when a photon is radiated at a
small angle with the direction of motion.

at 15 cps,
at 30 cps.

(30)

CORRECTION OF RADIATION EFFECTS

In order to achieve optimum performance of an
alternating gradient electron accelerator, it may be
necessary to use correcting devices to redistribute the
total damping rate of 2P,o/E, among the principal
modes. In order to minimize the radio-frequency power
required, which is related to the magnitude of phase
oscillations, it is desirable to make the damping rate
of the synchronous oscillation as large as possible,
while also controlling the damping rates of the radial
and vertical betatron oscillations so as to keep the
electrons within the proper region of the vacuum
chamber.

377

It is shown in Appendix I that the damping rates of
the individual modes are independent of the nature
of the radio-frequency accelerating system, and hence
cannot be changed by an external electromagnetic
field, unless the external field is sufficiently strong to
make an appreciable change in the electron trajectories
in the magnet structure. .

Radio-frequency fields of this magnitude are usually
impractical to attain.

There are two possible methods of correcting the
damping rates of the individual modes. The first method
uses correcting devices which utilize a force not due to
an external electromagnetic field, such as energy-loss
foils, or radiation loss in a magnetic field.

The only practical method of this type is to use the
radiation loss in a magnetic field. The use of foils would
introduce excessive fluctuations in loss due to brems-
strahlung radiation. The damping rates were derived
in terms of the momentum compaction factor «, for a
magnet structure in which the principal orbit is on an
isomagnetic line except for straight sections. By chang-
ing the magnet structure so that the principal orbit is
not on an isomagnetic line, it is possible to change the
damping rates without changing « appreciably. This
could be done by redesigning the magnetic structure
such as adding quadrupole lenses or making the field
strength different in focusing and defocusing sectors.
A correcting device which may be added to the Cam-
bridge type of magnet structure to reduce the anti-
damping of the radial betatron oscillations is a magnet
with a large # value ('), such that the radiation loss
decreases with increasing radius. This device is made
with close-spaced alternations in direction of magnetic
field such that the phase angle associated with each
magnet is very small. It will then produce very little
effect on the electron motion. The radiation loss caused
by this structure may be written

Py =P, (E/Eo)*(B/By)?
=P,/'[1+2(AE/Eo)+2(AB/By)]
AB/Bo=—n'(x/r0) =—n'a(AE/E,);
then
Py =P /[1—2(n'a—1)(AE/Eo)]. (31)

From Egs. (15) and (11), the change in damping
rates of the synchronous and radial betatron oscilla-
tions are

Aa,= (n'a—1) (Pyd'/En),

Aay=—(n'at%) (Pyd'/Ey).

In order to eliminate the anti-damping of the radial
betatron oscillations by this method requires

3(Pyo/Eo)(1—a) = (n'a+3)(Py/Es).  (33)

The other method of correcting damping rates is to
use an external field which couples modes of oscillation
strongly, such that the new principal modes of oscilla-
tion are radically changed from the original modes,

(32)
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with correspondingly changed damping rates. It is not
practical to couple the synchronous oscillations strongly
with the betatron oscillations with a device which is
small compared with the magnet structure. This is due
to the different characteristics of the betatron and
synchronous oscillations. However, if the vertical and
radial betatron oscillations have nearly identical fre-
quencies, it will be possible to couple the modes strongly
with a relatively small device. This has the effect of
producing new modes of betatron oscillation with
reduced antidamping and damping rates, and has the
desirable characteristic of not reducing the damping
rate of the synchronous oscillation.

A practical method of achieving this coupling uses
a magnetic quadrupole lens which is rotated 45° as
compared with the usual type of quadrupole lens used
for correction of betatron frequency.

By proper choice of coordinate system, the transfer
matrix for radial betatron oscillations for one complete
revolution is taken to be of the form

X2 cosf, sinf,\ 7 %1
()~ ( )() o
X —sind, cosf,/ \xy
e* cosf,—\ e sind,
—e® sing,, et cosf,—\
ge—** sing, 0
ge 1 costly 0

By reducing the determinant and substituting

A=ex?(1+7,),
0.=9,
8,=06+A9,

and retaining terms to second order in v,, ai, Ad, g,
the result is

4(ys—ay) (vetai3iA0)+ g2 =0.

By substituting y.=as+i8: and eliminating Bs, one
obtains ’

40.’12 - 4a22+ ((11/(12)2 (A0)2 it (A0)2 = q2,

(38)

(39)

where a; is the damping and antidamping of the new
modes of oscillation in one revolution. a; and a; will
probably be very small compared with the difference
in phase Af in one revolution. Then

as/oan=[(g/A0+ 1]

This coupling has the effect of rotating the principal
planes of oscillation such that they are no longer
radial and vertical. This coupling could not be used at
injection as it would rotate the large radial oscillations
partially into the vertical plane, and would cause loss of
particles due to the small vertical aperture. The cou-

(40)

—e 1 ginf,
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The transfer matrix for radial and vertical betatron
oscillations, including the effect of radiation damping is

e* cosfl, e sinf, 0 0
—e* sinfl, e* cosf, 0 0
0 0 e *lcosfl, e * sind,|’ (35)
0 0 —e % sinf, e % cosd,

where «; is the radiation damping in one revolution.
It is assumed for simplicity that the radial anti-damping
is equal to the vertical damping.

The transfer matrix of the rotated quadrupole lens
will be of the form

SO =

(36)

O R O
-0 oo

SO O

q

The damping of the new modes of oscillation are
determined by solving for the principal values \ of the
resulting transfer matrix.

The secular equation is
ge®! sind, 0
qeal cosf,, 0 =0. (37)

e~ cosfy,—N\ e sind,
e~ cosfly,— A\

pling would be turned on when the oscillation amplitudes
have been reduced by adiabatic damping.

The radial and vertical betatron oscillations could
also be coupled by applying a magnetic field parallel
to the direction of motion. This method requires the
frequency difference between the two modes to be very
much smaller, in order to couple them with a device
of practical size.

A combination of the two correcting methods, cou-
pling of radial and vertical betatron oscillations and the
magnetic radiation loss device, is probably the best way
of eliminating the antidamping of the radial betatron
oscillations, and obtaining maximum damping of the
synchronous oscillations.
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APPENDIX I

We prove here that the damping of the individual
modes is not changed by a general radio-frequency field.

A radio-frequency cavity is considered in which
there may be both radial and azimuthal forces on the
electrons, which vary with the deviation of the particle
from the position on the principal orbit.

The effect of the cavity as observed in the rest
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system of an electron may be written

oE.* oE*

ApF= —ex*f( )dz‘*—ez*f( )dt*,
ox* az*
OE* OE*

ApF=— ex*f di*— ez* dar¥, (41)
ox* dz*

OE* OE* OB,*
[ e
az* 9x* at*

For a complete transversal of the cavity, /" (dB,*/dt)dt*
=0. Therefore

(9p2*/05*) = (9p-*/9x™). (42)

In the laboratory system the effect of the radio-
frequency cavity is to introduce an angular deviation
and energy change, relative to an ideal particle,

a1’ =cp.*/Eo, ex=cp.*(Eo/mc*);

then

(0x1/ 02) = (c/ Eo) (9p<*/ 07)
= (c/mc*) (3p:*/92*) = (c/mc*) (3p:*/ 0x¥),
(axl’/az) = (I/Eg) (662/3.’)0).

The fourth order transfer matrix of the magnet
structure for one complete revolution, relating initial
to final values of radial displacement, radial angular
variation, energy variation, and azimuthal displace-
ment, will be of the form:

(43)

Yir Y1z Y18
Y21 Y2 Y23
0 O 1

Y41 Y42 V43

(44)

_ O oo

The radio-frequency system and radiation loss are
neglected in this transfer matrix.
The basic relationships in the magnet structure are

dz/ds=—x/r, dx/ds=x,
dx'/ds= (1/7)(AE/Eo)+xf(s), (45)
where s is the position on the principal orbit and 7 is
the radius of curvature of the principal orbit.
By writing these relationships in terms of fixed
initial conditions at one point, the following equations
are obtained:

da/ds =11 %0Fv12' % +v15' (AE/Eo)
=721x0+722x0'+723(AE/E0):

dz/ds=v4'%eFvss' 2 +v45’ (AE/ Eo)
=— (1/1’)[711000+’Yl2x0,+')’13(AE/EO)]:

dx’ /ds="ya" %o Fv2e ' +v25' (AE/Ey)

= f(s)y1xot f()y1a20’

+Lf(vis+ (1/7)I(AE/Eo).
Since the initial conditions are independent, their

coefficients must be independently equal for each
equation. Then the following relationships may be

(46)

379

derived :

‘-(711’)’22—’)’21’)’12) = 0,
ds

d
;(723—742721+'Y41’Y22) = (713—742711+741712)f(3), (47)
s

d—(’Y13—’Y42’Y11+’Y41’Y12) = (’723‘“‘)’42’)’21+’Y41’Y22)-
S

Then the well-known relationship follows
Yiryse—vizyai=1.
Also

Yis—Yaryutvary=0,
(48)
Yo3—Yazyort+vary2e=0.

To determine the effect of the cavity on the syn-
chronous oscillation, the change in the equilibrium
orbit is analyzed.

The radial displacement at the cavity of an equilibrium
orbit, for an energy variation AE is given by

( / ll“'Yn
X1=
—72

Yosvie+vis(1—7v29) AE

AE
E,y

Y13 —Y12 — Y12

Y3 1—7va 1—7vq

. (49)
2—y1u—"72 E,

The change in length of an equilibrium orbit with an
angular deflection x;” at the cavity is given by

7417124‘742(1 —’711) ,

2—v11—"a2
By using Eq. (48), one obtains
[723712+713(1 —722)] = [741712+742(1 —"Yu)], (51)

Eo(xl/AE) =Al/x1'.

For particles traveling on an equilibrium orbit there
is a linear relation between xi, 2, and AE. Therefore z
and AE may be taken as the independent variables in
writing the equations of synchronous oscillation :

dE/dN = (des/ 93)z+ (des/ OE)AE

— (8€1/902)z— (3e1/0E)AE, (52)
dz/dN =— (0l/dE)AE— (81/92)z.
The damping of the solution is given by
o =—3[(3e/IE)— (des/OE)+(31/32)].  (53)

The fields of the generalized radio-frequency cavity
are assumed to be small compared to the magnetic
guide fields, such that the equilibrium orbit correspond-
ing to an energy variation is not appreciably changed by
the cavity.
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Then (de1/dE), is equal to the value of de;/dE with-
out the general radiofrequency cavity.
Also
(81/32) g=(9/0x1") g (021" / 3%) x,
(6e2/6E)z= (662/8x1)3(6x1/6E)z.
From Eq. (51), one finds
(al/axl’)E=Eo(6x1/6E)z
From Eq. (43), one finds

(0%1'/82) s = (1/Eo) (9es/ 3%1)..

(54)

(55)

(56)
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Therefore
(31/0z) = (0e2/ IE)., (87)
o/ =—}4(0a/0E).=—}(de/dE).  (58)

Thus, if the fields are not sufficiently strong to
change the form of the equilibrium orbit appreciably,
the damping rate of the synchronous oscillation is not
changed by any form of radio-frequency fields.

Since the total damping rate is invariant, the damping
rate of the radial betatron oscillations is also not
changed by a generalized radio-frequency field.
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Thermal Diffusion Factors from Column Operation*f

T. I. MoraNI anD W. W. WaTsoN
Physics Department, Yale University, New Haven, Connecticut

(Received Nobember 11, 1957)

Extending the measurements of Corbett and Watson, the performance of a carefully-constructed, all-
metal, hot-wire thermal diffusion column has been determined for isotope separations in neon, argon,
krypton, and xenon. The same quantitative agreement with theory for normal argon gas at the low wall-
temperature ratio of 2 is again found. This is probably fortuitous, for in general there is a discrepancy be-
tween the calculated and observed separation factors, with a trend in the data indicating that the assumptions
of the theory that (1) the molecules are Maxwellian and (2) the thermal diffusion factors are constant,

independent of temperature, are at fault.

INTRODUCTION

HE hot-wire thermal diffusion column has proven
to be of great value in the isotopic enrichment of
certain gaseous compounds. Many workers have com-
pared the experimental performance of such columns
with the theory of Jones and Furry,! finding that the
agreement is in general only qualitative. Corbett and
one of the present authors,> however, using a carefully
constructed all-metal column, reported very good agree-
ment between experiment and theory, without the
inclusion of any parasitic remixing term, when the
column was operated with normal argon gas at a tem-
perature ratio of 2 between the hot wire and the
cold wall.

This result raises the question as to whether under
such conditions one can determine thermal diffusion
factors « from measurements of column performance.
To investigate this possibility further, we have studied
the performance of this same column for other noble
gases. Our results show that, in general, accurate values

* Part of a dissertation submitted by T. I. Moran in partial
fulfillment of the requirements for the degree of Doctor of Philos-
ophy at Yale University.

t This work was supported in part by the U. S. Atomic Energy
Commission.

1 Now at the General Electric Company, Hanford, Washington.

IR. Clark Jones and W. H. Furry, Revs. Modern Phys. 18, 151
(1946).

2 J.'W. Corbett and W. W. Watson, Phys. Rev. 101, 519 (1956).

of & may not be so determined, and for the reasons dis-
cussed at the end of this report.

Although the Jones and Furry theory considers the
gas as a binary isotopic mixture of Maxwellian molecules
with a constant thermal diffusion factor to be evaluated
at the cold-wall temperature, it is easy to generalize to
the case of a multi-isotopic mixture. According to this
theory the equilibrium separation factor ¢; for two
isotopes ¢ and j, defined as the ratio ¢;/c; of the con-
centrations at the upper end to that at the lower end,
is given by the expression

qij= i, 1)
where
Ay=H;/(KA+Ka), (2)

and / is the length of the column. The thermal diffusion
factor a.; is contained in the transport factor H;;. A
reduced thermal diffusion factor ag may be defined from

a=ao(mi—m;)/m, 3)

where the m; and m; are the masses of any two isotopes
in the multicomponent mixture and 7 is the average
of the two. To the sum of the two remixing factors K.
from convection and K, from axial diffusion is usually
added of necessity a third, K,, from parasitic effects
originating in nonuniformities of construction, azi-
muthal temperature asymmetries, etc. Only in our first



