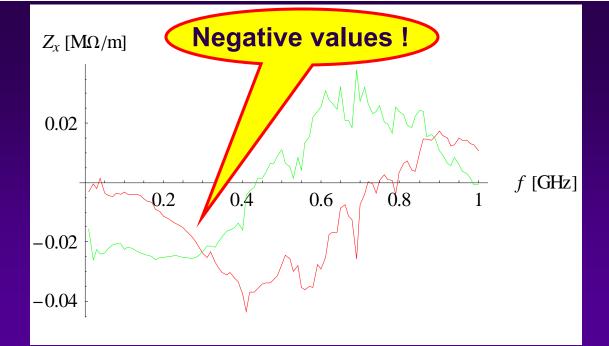
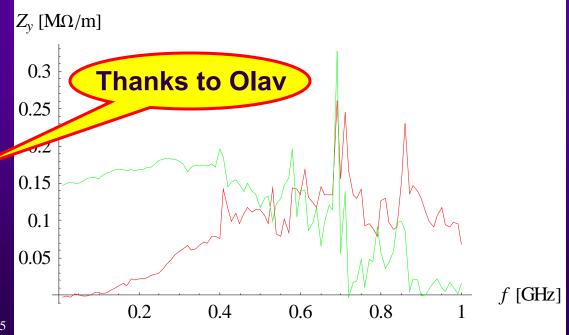
IMPEDANCE OF PS KICKERS FOR THE NEW CT: 1st ANALYSIS

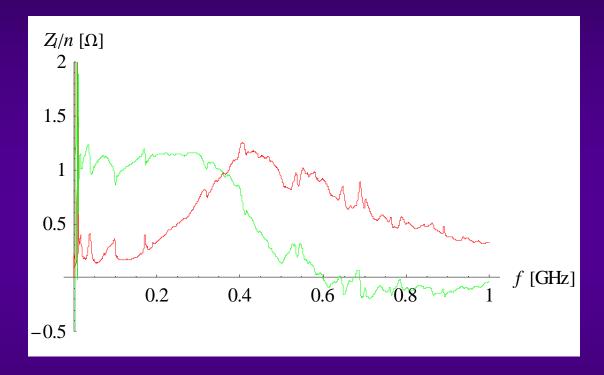
Elias Métral

- Measurement of the longitudinal impedance vs. transverse offset by F. Caspers and T. Kroyer (with the presence of FR)
 ⇒ Data sent to me on September 8, 2005
- Transverse impedance deduced from Panofsky-Wenzel theorem


will 2 be installed in the **PS (SS 13 and 21)** \Rightarrow L = 0.666 m for 1 kicker \Rightarrow It is the same type as the extraction kicker KFA 71 (but 4 times smaller)


$$\beta_x^{13} \approx 22.1 \,\mathrm{m}$$

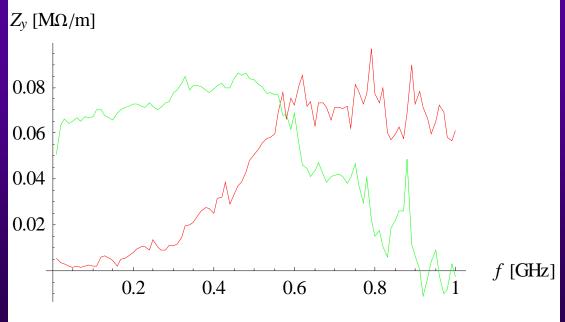
$$\beta_y^{13} \approx 12.5 \text{ m}$$


$$\beta_x^{21} \approx 20.4 \text{ m}$$

$$\beta_{\rm v}^{21} \approx 11.9 \,\mathrm{m}$$

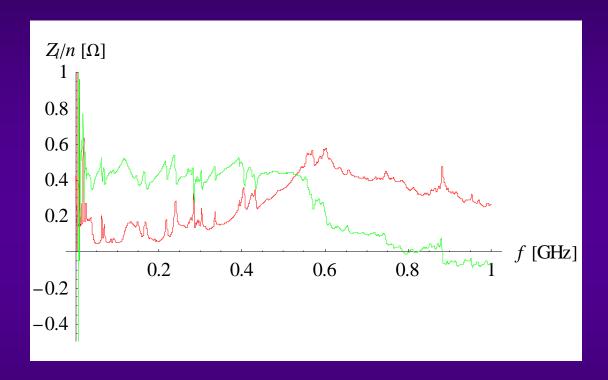
Elias Métral, RLC meeting, 23/09/05


⇒ 2 will be installed in the PS (SS 64 and 72) ⇒ L = 0.615 m ⇒ Modules recuperated from the extraction kickers for leptons


$$\beta_x^{64} \approx 12.7 \text{ m}$$

$$\beta_{\rm v}^{64} \approx 21.7 \,\mathrm{m}$$

$$\beta_x^{72} \approx 11.9 \text{ m}$$


$$\beta_{v}^{72} \approx 22.1 \,\mathrm{m}$$

Elias Métral, RLC meeting, 23/09/05

4/10

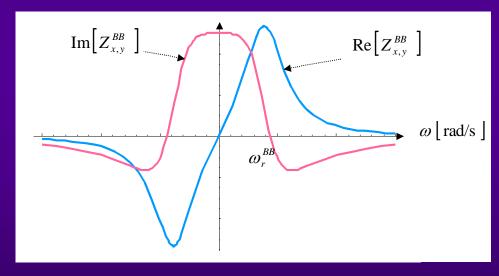
Conclusions (1/3)

◆ The Broad-Band impedance of the PS machine is

$$\operatorname{Im}\left[Z_{l}^{BB}/n\right]_{l.f.} \approx 20\,\Omega$$

$$R_x \approx 1 \,\mathrm{M}\Omega/\mathrm{m}$$

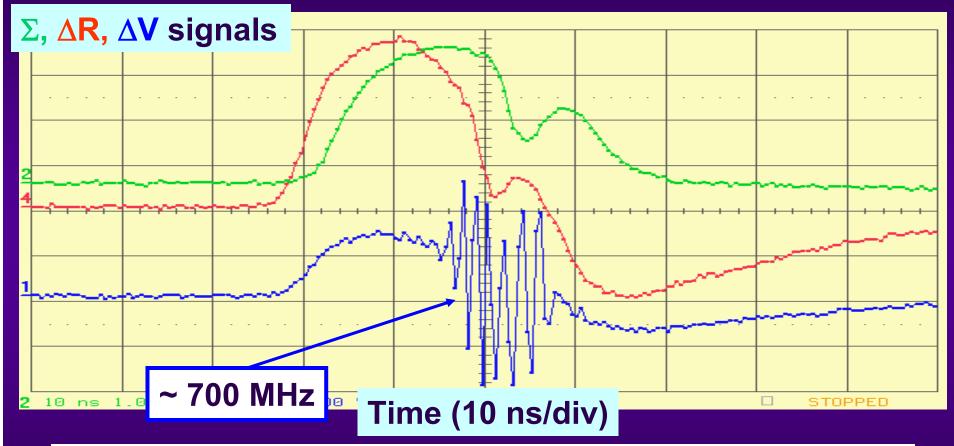
$$R_{y} \approx 3 \,\mathrm{M}\Omega/\mathrm{m}$$


$$\frac{Z_l^{BB}}{n} = \frac{\Omega_0}{\omega} R_l / \left[1 - jQ \left(\frac{\omega_r}{\omega} - \frac{\omega}{\omega_r} \right) \right]$$

$$Z_{x,y}^{BB}(\omega) = \frac{\omega_r}{\omega} R_{x,y} / \left[1 - jQ \left(\frac{\omega_r}{\omega} - \frac{\omega}{\omega_r} \right) \right]$$

$$\omega_r = 2\pi f_r = 2\pi \times 1.4 \text{ GHz}$$

$$Q = 1$$


$$R_{x,y} \approx \text{Im} \left[Z_l^{BB} / n \right]_{l.f.} \times \frac{2 R}{\beta b_{eq}^2}$$

The vertical plane is the most critical ⇒ We will add ~ 0.4-0.5
 MΩ/m to the ~ 1.5 (at ~ 700 MHz) already present ⇒ Increase of ~ 30% ⇒ Will be more critical at transition for nTOF

Conclusions (2/3)

Fast vertical single-bunch instability at the CERN PS near transition (~ 6 GeV total energy)

⇒ Instability suppressed by increasing the longitudinal emittance to ~ 2.2 eVs ⇒ The longitudinal emittance will have to be increased to ~ 2.5-3 eVs

Conclusions (3/3)

For the longitudinal impedance, it will be increased by ~ 15%
 ⇒ Check beam stability in particular for LHC

APPENDIX (1/2)

1. The following kickers are installed presently in the PS machine

- a. Injection kicker in section 45
- b. Extraction kicker in sections 71 and 79
- c. BFAs (pedestal and staircase) in sections 9 and 21
- d. Injection kicker for ions in section 28

2. The following kickers will be installed for the first stage of the novel multi-turn extraction

- a. Two new kickers in sections 13 and 21. The modules are similar to those of the extraction kicker
- b. Two new kickers in sections 64 and 72. The modules are recuperated from the extraction kickers for leptons
- c. All the kickers mentioned under the point 1. will be also present

3. For the second stage it is foreseen to

- a. Decrease the rise-time of the kickers in section 13 and 21. At the same time a new design of the modules could be made so to reduce the impedance seen by the beam
- b. The BFA in section 21 will be removed
- c. The BFA in section 9 will stay in the machine
- d. Injection kickers (section 28 and 45) and the extraction kicker (sections 71 and 79) will, of course, remain in the machine

APPENDIX (2/2)									
Name	Magnet type No. of cells × 1 (mm)	Elem ent	mech. Aperture hor×ver (cm) of 1 magnet module	magn. Aperture w×h (cm²)	Air field (Gauss)	leff (cm)	Int.Bdl (Gauss m) in SS	Rise - Fall time (5- 95)% ns	Flattop µs
Pedestal	Lumped L	BFA 9/21 P BFA	15.8 × 5.25	15.8 × 5.25	478.5	50	239.2	131	12.6
Staircase	Lumped L	9/21 <u>S</u>	15.8 × 5.25	15.8 × 5.25	765.6	39	298.6	260	12.6
Kicker 28	Lumped L	<u>KFA</u> <u>28</u>	15.9 × 7.0	15.9 × 7.0	251.2	92.5	232.4	255	0.6 - 6.8
TIK Proton	Delay line 8×25	<u>KFA</u> <u>45</u>	15.0 × 5.3	15.0 × 5.3	355.5	22.1 × 4	314.2	39	2.6
FAK71/7 9	Delay line 9×24	<u>KFA</u> 71/79	14.7 × 5.3	14.7 × 5.3	628.0	22.2 × 12	1671.9	68 - 70	0.1 - 2.1
PS e+/e-inj.	Delay line 24×24	<u>KFA</u> <u>72/94</u>	11.2 × 7.4	11.2×7.4	424.3	61.5	261.0	87 - 90	0.1 - 2.1

Elias Métral, RLC meeting, 23/09/05

10/10